IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1974

Some properties of some rare-earth and transition metal dihydroxycarboxylates

Santi Kulprathipanja Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Inorganic Chemistry Commons</u>

Recommended Citation

Kulprathipanja, Santi, "Some properties of some rare-earth and transition metal dihydroxycarboxylates " (1974). *Retrospective Theses and Dissertations*. 6286. https://lib.dr.iastate.edu/rtd/6286

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
- 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again beginning below the first row and continuing on until complete.
- 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
- 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms

300 North Zeeb Road Ann Arbor, Michigan 48106

74-23,744

KULPRATHIPANJA, Santi, 1944-SOME PROPERTIES OF SOME RARE-EARTH AND TRANSITION METAL DIHYDROXYCARBOXYLATES.

•

1

Iowa State University, Ph.D., 1974 Chemistry, inorganic

University Microfilms, A XEROX Company , Ann Arbor, Michigan

Some properties of some rare-earth and transition metal

dihydroxycarboxylates

by

Santi Kulprathipanja

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Chemistry Major: Inorganic Chemistry

Approved:

7

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Of Science and Technology Ames, Iowa

TABLE OF CONTENTS

XV. ACKNOWLEDGMENTS

Page

I. INTRODUCTION

Because the rare earths (those elements of atomic number 57 through 71, as well as 21 and 39) all exist as trivalent ions in solution and have a great affinity for water, their ions are protected by a tightly adhering hydrated layer. This layer makes the properties of the rare-earth ions even more alike; so, the separation of the pure individual rare-earth elements is very difficult. A great deal of research on separating these elements by fractional means was done over 140 years (1794 to 1940). During that period, all the naturally occurring rare earths were isolated, and a great deal about their basic properties was learned. During World War II, ion-exchange methods were developed at the Ames and Oak Ridge Laboratories for separating rare earths, and better than 99.99% pure rare earths have become commercially available since that time.

Although pure rare-earth elements have been isolated readily the past 20-30 years, much of their chemistry is still in question compared to the chemistry of the transition metals. Chemistry of rare earths in solution is one of the least understood subjects. Complex ion formation is highly important with these cations, but the governing principles are not as clearly decipherable as is the case with the transition metals. There are several reasons for this. In the first place, the well-shielded (by 5s and 5p electrons) 4f electrons of lanthanides precludes the probability of hybrids that would lead to covalent bonding involving 4f orbitals. A further reason lies in the relatively large sizes of the cations. Attractions that the cations have for anions to yield complexes by any kind of ionic association are sharply reduced. The number of known complexes is

limited, because only species that can attract these cations as a result of their own small size, large charge, or chelating ability will give strong complexes.

Because of the lanthanide contraction, one should expect a decrease in basicity across the series from lanthanum to lutetium. If only electrostatic character and the lanthanide contraction are considered in the complex formation of rare earths, a monotonic increase in formation constants across the series from lanthanum to lutetium would appear to be axiomatic (the bond strength should increase linearly, or nearly so, from lanthanum to lutetium). In nearly all complex systems which have been studied, this is not strictly the case. Although other factors, such as crystal field effects, thermodynamic considerations and Bjerrum's statistical ratio theory have been invoked to account for the perturbations observed, none satisfactorily elucidates all factors of the various stability trends extant.

Two ligands (α , β -dihydroxyisobutyrate and α , β -dihydroxy- β -methylisobutyrate) are studied in this dissertation. Complex formation between these two chelates and rare-earth cations have been investigated. Hopefully, some questions concerning the dentate character of these ligands, as well as inductive and steric effects of the added functional groups in these two chelates (compared to α -hydroxyisobutyrate and ethylmethylglycolate) why the effects of the lanthanide contraction and bonding character of the ligand in rare-earth complexes alone do not explain the observed stability trends. The formation constant data obtained from studies in this research fill some holes in the literature regarding the solution chemistry of

lanthanons. Such data are of particular importance in predicting the separability of the lanthanons by ion-exchange chromatographic techniques.

The well-known Irving-Williams order of stabilities and a linear relationship between the acidity of the donor group and chelate stability have been found to hold for most data for divalent transition metals found in the literature. It was intended to further test these two theories using the α -hydroxyisobutyrate, α , β -dihydroxyisobutyrate and α , β -dihydroxy- β -methylisobutyrate ligands. Consequently, complex formation between some divalent transition metals and these three chelates was also studied. It was hoped that formation constants obtained from this study might shed light on the molecular structures of these complexes in solution.

II. REVIEW OF PREVIOUS WORK

A. Transition Metal Hydroxycarboxylates

1. The Irving-Williams order of stabilities

Mellor and Maley (1, 2) pointed out that the stability of complexes of bivalent transition metal ions with ammonia, ethylenediamine, propylenediamine or salicyladehyde follows the order

Cu > Ni > Co > Zn > Cd > Fe > Mn

They were not yet certain what factor or factors determined the order of chelate stability for metals in this series. The electronegativity or basicity of the metal was thought to have something to do with species stability (the more basic the metal, the less stable its complexes). If this were so, one should expect to find a correlation between the covalent radii of bivalent transition metals and the stability of the various complexes formed by them. Because the extreme members of the series were concerned, they concluded that the above stability order held, irrespective of the nature of the ligands involved. Their extended sequence has, however, little generality and it fails with, e.g., glycine, alanine, glycylglycine, and several carboxylic acid anions, for which the order is

Cu > Ni > Zn > Co > Mn

Irving and Williams (3, 4) later showed, however, that the Mellor and Maley order of stability does not hold for some systems. The previously published and current data on complexes formed by bivalent ions of the first transition series were collected and examined critically by Irving and Williams and the order Mn < Fe < Co < Ni < Cu > Zn was found to hold for the stabilities of nearly all such complexes (irrespective of the

nature of the coordinated ligand or of the number of ligand molecules involved). This order is now known as "the Irving-Williams order of stabilities." Some of the ligands cited in this case are ethylenediamine, propylenediamine, 1,3-diaminopropane, 1,2,3-triaminopropane, diethylenetriamine, triaminotriethylamine, triethylenetetramine, a great variety of α - and β -aminoacids, nitrilotriacetic acid, ethylenediaminetetraacetic acid, tropolone, 4-hydroxypteridine, and many mono- and dicarboxylic acids. Thus, the Irving-Williams order remains valid for "nitrogen-type", "nitrogen-oxygen-type", and "oxygen-type" ligands.

Irving and Williams suggested that both ionic bonds and covalent bonds were controlling factors in the stability order of metal complexes. Because, if complexes between cations and ligand anions were purely electrostatic in character, a simple relation should exist between their association constants, K, and the radius, r, of the unhydrated ion and its valency, Z. But, from the experimental and calculated values of K for hydroxy-complexes of the bivalent transition metals, it was revealed that these were much more stable than could be accounted for by purely electrostatic forces of attraction. That the increments in stability should increase monotonically along the Irving-Williams series can only mean that some additional stabilizing factor is in operation which increases in extent as one moves along the series; this must be the tendency towards the formation of a covalent bond between metal and ligand. The point was made (by the plots in figure 1) that, while the stability sequence follows the Irving-Williams order for all the ligands represented, the stability increment from metal to metal is greatest for the most polarizable ligand. The respective increments decrease with bidentate

Figure 1. Divalent transition-metal complexes with various types of ligand

ligands as the donor atoms change from N to O (e.g., ethylenediamine)> nitrogen-oxygen-type ligands (e.g., glycine), and > oxygen-oxygen-type ligands (e.g., salicylaldehyde and oxalic acid). Furthermore, the more electropositive the coordinating atom of the ligand, the greater the stability increment from metal to metal. This emphasizes the significance of covalent bonding in determining the stability of complexes. The magnitudes of the electrostatic and covalent interactions were suggested to be dependent upon the reciprocal of the ionic radius (Z^2/r) and the second ionization potential as $(M(gas) \rightarrow M^{+2}(gas) + 2e)$ both increase monotonically throughout the series from manganese to copper.

2. The influence of the donor group in complex stability

The linear relationship between the basicity of the donor group (pK_a) and the chelate stability $(\log K_n)$ has been found to hold in a large portion of the literature reported so far. Thus, the weaker the acidity of the ligand, the more stable is the chelate compound. Thun, Guns and Verbeek (5) suggested that the stability constants of the α -hydroxyiso-butyrate bivalent metal complexes being higher than those for the corresponding lactate complexes could be attributed to the increased inductive effect of the 2-methyl group in α -hydroxyisobutyrate. This effect becomes quite evident in the acid dissociation constants: $K_a = 2.30 \times 10^{-4}$ for lactic acid, $K_a = 1.73 \times 10^{-4}$ for α -hydroxyisobutyric acid. Filipović, <u>et al</u>. (6,7) reported the stability constant of bivalent metal complexes with lactate are greater than for the corresponding glycolate complexes, and again the increased inductive effect of the methyl group in lactate makes the acidity of lactic acid lower than in glycolic acid.

At this point one can see that the values of stability constants of bivalent metal complexes increase in the series glycolate < lactate < α -hydroxyisobutyrate, and the acidity of the three acids considered change in the reverse sequence.

Murakami, <u>et al.</u> (8) found linear relationships between the acidities of the donor groups in four catechols and the stabilities of their chelates with copper(II) and zinc(II). In this case the acidity of both hydroxyl groups in the ligand molecule should be taken into consideration, since both groups are involved in chelate ring formation. The value of $(pK_{H_2L} + pK_{HL})$, as a measure of ligand basicity, decreases in the order: catechol > 4-carboxycatechol > catechol-4-sulfonate > Tiron. The stability order, however, is antiparallel to this order and is found to be in the sequence: Tiron > catechol-4-sulfonate > 4-carboxycatechol > catechol. Substituent groups were considered to play an important role in this case.

Filipović, <u>et al.(6,7)</u> reported the stability constants between divalent transition metals and some monocarboxylate ligands. The ligand acidity, decreases in the order: formic acid > acetic acid > propionic acid, and all the metal complex stabilities considered changed in the reverse sequence.

Steric hindrance influences on formation of metal complexes by a ligand can be overwhelming, by causing a less favorable positioning of the basicity of the donor groups with respect to the available coordinations sites. Roletto, <u>et al</u>. (9) and Ostacoli, <u>et al</u>.(10) illustrated this situation in a case of dicarboxylic acids (cyclopropane-1,1-dicarboxylic, cyclobutane-1,1-dicarboxylic, cyclopentane-1,1-dicarboxylic and cyclohexane-1,1-dicarboxylic acids) with some bivalent transition metal ions.

In this case a bigger ring bearing the donor groups tended to decrease the stability of the complexes. Here the increased inductive effect of the added methylene group in a bigger ring did not increase the stabilities of the metal complexes.

Wernke end Kwietkowski (11) reported the stability constants of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with propionate, β -hydroxypropionate and α -hydroxypropionate. They showed that the values of the stability constants increased in the series propionate $<\beta$ -hydroxypropionate $<\alpha$ -hydroxypropionate. From this sequence it follows that the presence of a hydroxyl group in a carbon chain raises appreciably the stability of the compounds being formed. The basicity of the donor ligands changes in the reverse sequence. Both phenomena may be ascribed to the availability of the hydroxyl group in the carbon chain. Situating an -OH at α or β position allows five- or six-membered rings to form, respectively. The former is characterized by a higher stability than the latter. The increase in the values of the observed stability constants clearly points to chelate ring formation involving bidentate ligands.

Patel and co-workers (12, 13) reported some non-relationships between the basicity or steric hindrance of the donor group (see Table 1, in which: 3MeOHAO, 4MeOHAO and 5MeOHAO stand for the 3-methyl, 4-methyl and 5-methyl derivatives of 2-hydroxyacetophenone oxime; and 3MeOHB, 4MeOHB and 5MeOHB stand for the 3-methyl, 4-methyl and 5-methyl derivatives of 2-hydroxybutyrophenone, respectively) and the complex stabilities of divalent transition metal ions (Ni, Cu, Zn). No explanation was given.

Ligand		H		
	Cu	Ni	Zn	
3MeOHAO	11.26	7.53	7.98	11.86
4MeOHA0	10.92	. 7.50	7.86	11.71
5MeOHAO	11.18	7.49	7.83	11.97
OHB	7.87	5.28	6.00	11.43
3MeOHB	8.55	6.01	7.10	12.19
4MeOHB	7.54	5.88	6.68	11.63
5MeOHB	8.31	5.53	6.38	11.70

Table 1: Metal-ligand stability constants (logK) of metal complexes [Temp. = $40 \pm 0.1^{\circ}$ C, $\mu = 0.1M(KNO_3)$]

3. The ratios of stepwise stability constants

Bjerrum (14) has described this topic in detail, but a brief summation will be given here in order to elucidate the material in this section and elsewhere.

The successive formation constants are defined as

$$K_{n} = \frac{[ML_{n}]}{[ML_{n-1}] [L]}$$

where M and L are metal and ligand ions, respectively. The ratio of the successive formation constants, or the "total effect":

depends on three factors, the statistical term (S), the ligand repulsion effect (E) and the "rest" (everything else) effect (R). The relationship between these factors is

 $T = \frac{K_1}{K_0}$

$$\Gamma = S \times E \times R$$
.

The statistical factor, S, can be estimated from the number of cation association sites and ligand bonding groups, since each formation constant is equal to the rate constant of the forward step over the rate constant of the reverse step. The rate constant of the forward step, in each case, is proportional to the number of sites at which the ligand can bond to the pre-existing complex. The rate constant of the reverse step, in each case, is proportional to the number of ways in which the product complex can lose a ligand to reform the original complex.

If the ligand is monodentate, the coordination number of the cation is N, and n is the number of sites capable of losing a ligand, one can see that the ratio of first formation constant to the second formation constant or S is:

$$S = \frac{(N - n + 1)}{n} / \frac{(N - n)}{(n + 1)}.$$

If the ligand is polydentate, in order to find the factors proportional to the forward rate constants, one must examine the geometry of each reactant complex to determine the number of sites available to the ligand. This step is facilitated by the use of structural models. The reverse rate constants are always proportional to the number of ligands present in the product complex. Such statistical ratios have been calculated for square planar and tetrahedral models, and together with ratios for higher coordination which were calculated by Powell (15), are listed in Table 2.

Coordination number	Geometry configuration	dentate charactor	S
10	square antiprism $(D_{\mu}d)$	tridentate bidentate	4.92 3.13
9	trigonal prism (D ₃ h)	monodentate tridentate bidentate	2.22 4.92 3.27
8	cube (Oh)	monodentate tridentate bidentate	2.25 7.33 3.43
8	dodecahedral (D ₂ d)	monodentate tridentate bidentate	2.29 7.11 3.64
8	square antiprism $(D_{j_i}d)$	monodentate tridentate bidentate	2.29. 5.33 3.56
7	pentagonal bipyramid (D ₅ h)	monodentate tridentate bidentate	2.29 10.00 4.09
6	octahedral (Oh)	monodentate tridentate bidentate	2.33 16.00 4.80
4	square planar $(D_{\mu}h)$	tridentate bidentate	 8.00 2.67
4	tetrahedral (Id)	tridentate bidentate monodentate	12.00

Table 2: Statistical ratios of stepwise formation constants

The ligand repulsion effect: A ligand that is about to associate with a 1:1 or 1:2 species is repelled electrostatically by the already bound

ligands, since all ligands are either negatively charged or possess dipoles. That is E > 1.0. The "rest" effect, R, is generally ignored because it is obsure and usually equals about 1. R is only taken into consideration when such factors as steric hindrance, due to very large ligands are obvious.

Manning (16) summarized the stability constant data of divalent copper with acetate and glycolate ligands from Kolat and Powell (17), Fronaeus (18) and Lundquist (19) and found that E values in both ligands are about 1.6, and that T values are 4.7 ± 0.2 and 12.0 ± 2.5 for acetate and glycolate, respectively. His conclusions were that the respective species were comprised of monodentate acetate in square planar array about copper and bidentate glycolate in a square planar configuration about copper (in both cases R was assumed to be 1).

Powell and Rowlands (20) reported T values of 3.5 ± 1.0 in a case of divalent Co, Ni, Zn and Cd with 1-hydroxycyclopentanecarboxylate complexes, and 10.5 ± 0.6 for the copper complex. The conclusions were that, in tetragonally distorted octahedral complexes, coordination probably involves a mixture of monodentate and bidentate linkages in the cases of Co^{+2} , Ni⁺², Zn⁺², and Cd⁺², and a combination of bidentate and tridentate in a case of Cu^{+2} .

The steriochemistry of divalent transition metal complexes involves tetrahedral, square planar and octahedral structures, but some structures are more favored than others (21). Octahedral and tetrahedral coordination are the most common for divalent cobalt, which forms more tetrahedral complexes than any other transition metal ion. Divalent nickel forms mainly the structural types: octahedral, tetrahedral, and square planar.

Figure 2. Structure of Diaquobis(a-hydroxyisobutyrato)copper(II)

í

The crystal structure of (3,3-dimethyl-1,5,8,11-tetraazacyclotridecane) nickel(II) diperchlorate, for example, is square planar (22). Because of the Jahn-Teller effect in the d⁹ configuration of divalent copper. the tetragonally distorted octahedron (in which two trans metal-ligand distances are greater than the other four) is the most common structure. Prout, et al. (23) reported the crystal structures of bis(glycolato) copper(II), aquobis(DL-lactato)copper(II)hemihydrate, diaquobis(α -hydroxyisobutyrato)copper(II), diaquobis(methoxyacetato)copper(II), and diaquobis(phenoxyacetato)copper(II). All these complexes contain trans-chelate rings which (apart from the bow-shaped lactate) are co-The copper ions are in elongated tetragonally distorted octaplanar. hedral environments with two exceptions: in the lactate copper ions are in a nearly square-pyramidal five-coordinate environment; and in the methoxyacetate the octahedron is compressed. Figure 2 shows the crystal structure of diaquobis (a hydroxyisobutyrato) copper (II). The coordination configuration of the copper is distorted octahedral with the copper-water contact Cu-O(4) 2.56, copper-hydroxyl group Cu-O(3) 2.01, and the copper-carboxyl-oxygen Cu-O(1) 1.89. The individual complexes are joined by hydrogen-bonding of the hydroxyl group O(3) to O(2) of another molecule in the mirror plane, and the resulting sheets are held together by hydrogen-bonding through the water molecules. Divalent zinc and cadmium often have coordination numbers of six; but four, such as in the case of the tetrahedral structure, is more common. The crystal structure of zinc(II)dithizonate, for example, has been determined by single crystal X-ray analysis to be tetrahedral by Mawby and Irving (24).

4. Formation constants

The stabilities of metal chelates increase with the effective polydentate nature of the chelating agents (25), so one should observe a stability constant increase in the order of metal-monocarboxylate < metal-dicarboxylate < metal-tricarboxylate. It is also expected to find that the stability constants of metal-hydroxycarboxylates fall between those of metal-monocarboxylates and metal-dicarboxylates. Complexes of divalent transition metals with ligands containing oxygen atoms as potential donors, such as carboxylates and hydroxycarboxylates, will be reviewed here. Sillen and Martell (26) have published an extensive compilation of stability data which includes transition metal species formed with many other kinds of ligands.

Because only weak complexes form between monodentate carboxylate ligands and divalent metal ions, few data regarding these have been reported in the literature so far, and as a matter of fact, those reported do not agree with each other very well. The stability constants in Table 3 were collected from data reported by Filipović, <u>et al</u>. (6, 7), Mihailov, <u>et al</u>. (27), Hershenson, <u>et al</u>. (28), Kolat and Powell (17), Yasuda, <u>et al</u>. (29), Tanaka (30), Sandell (31) and Mihailov, <u>et al</u>. (32). With regard to the values of stability constants in Table 3 (taking into consideration the lower accuracy in the case of formate) one can see that the Irving-Williams order of stabilities holds for these systems.

	metal	ĸ	К ₂	Ka	Temp.	μ	Ref.
1.	Formate:					· · · · · · · · · · · · · · · · · · ·	
	Co	5.4	2.8		25	2	7
	Ni	2.9	0.9		25	2	7
	Cu	25.0	8.0		25	2	6
		30.0	2•9 1/5		27 25	2	27
	Zn	5.0	2.4		25	2	20 7
		3.2	1.7		25	2	27
		4.0	2.3		25	2	28
	Cd	7.0	1.0		25	2	7
		4.4	4.1		25	2	27
		3.0	4.3		25	2	28
2.	Acetate:	1. (05	0	•
	CO	4.6	⊥•3 2 5		25	2	(7
	ЛТ	2•2 10 0	2.9	2.05×10^{-5}	25	2	29
	Cu	78.0	15.8	2.80×10^{-5}	20	0.1	17
	ou	50.0	9.0	1.00 11 10	25	2	6
		63.1		2.95×10^{-2}	25	l ·	29
	Zn	19.0	6.5	2.80×10^{-7}	20	0.1	17
		5.0	2.4	-5	25	2	7
		10.0	_	2.95 x 10_5	25	1	29
	Cd	4 <u>1</u> .0	11.7	51 <u>00 × TO</u> .	20	0.1	1.7
		6.7 27.6	1.3	2 05 T 10-5	25	2 1	20
3	Propionate.	51.0		2.99 X 10	2)	1	29
•ر	Co	5.0	0.8		25	2	7
		5.3			25	1	11
	Ni	5.5	2.5		25	2	7
		6.0			25	l	11
	Cu	40.0	11.0		25	2	6
	7 -	46.0	0.1		25	1	11
	211	9.0 7.0	2・フ クリ		27 25	2	<i>ן</i> רר
	6.0	16.0	2.4 3.9		25	2	11 7
		15.5	4.7		25	1	li
4.	Butyrate:		- •		-	-	
	Co	4.6	1.7		25	2	7
	Ni	5.4	1.2		25	2	7
	Cu	35.0	8.6		25	2	6
	Zn	9.6	0.5		25	2	ί
	υa	TOPO	0.(<u> </u>	2	1

Table 3: The stability constants for the monocarboxylates of some bivalent metals.

.

.

	metal	К _l	к ₂	Ka	Temp.	μ	Ref.
5.	Benzoate:			- <u></u>			
	Ni	7.9		9.98×10^{-2}	25	.1	29
	Cu	39.8		9.98×10^{-7}	25	.1	29
	Zn	7.9		9.98×10^{-7}	25	.1	29
	Cd	25.1		9.98 x 10 ⁻⁷	25	.1	29
6.	Ethoxyacetate:						
	Ni	11.5	2.0		25	1	32
		10.5	3.0		25	1	31
	Cu	74.6	6.9		25	1	32
		62.0	12.0		25	l	31
	Zn	14.5	3.3		25	1	32
		13.5	5.5		25	1	31
	Cd	12.8	2.8		25	1	32
		11.7	4.2		25	l	31

Table 3: (continued)

Some stability constants for some dicarboxylate chelate species of bivalent metals are summarized in Table 4. More details can be found in the publication of Powell and Johnson (33), Yasuda, <u>et al.(29)</u>, Tanaka (30), and Roletto, <u>et al.</u> (34) from which these data were taken. Data in Table 4 show that the size of the chelate ring is the main factor influencing the stability of the complexes. The stability is highest for oxalate which forms a five-membered ring, and it decreases as the size of the chelate ring increases. The Irving Williams order of stabilities holds for these systems very well.

	metal	ĸl	ĸ2	Kal	K _{a2}	Temp.	μ	Ref.
1.	Oxalate Co Ni Cu Zn Cd	5.0x105 2x106 1.6x104 8.0x103 3.31x10	1.1x10 ⁴ 59	4x10-2 4x10-2 4x10-2 4x10-2 4x10-2 4x10-2	1.55x10 ⁻⁴ 1.55x10 ⁻⁴ 1.55x10 ⁻⁴ 1.55x10 ⁻⁴ 1.55x10 ⁻⁴	25 25 25 25 25	.1 .1 0 .1 0	26 26 26 26 26 26
	Malonate Co Ni Cu Zn Cd	9.0×10^{2} 1.88×10^{3} 1.60×10^{3} 1.04×10^{5} 1.0×10^{2} 9.3×10^{2} 5.0×10^{2} 2.0×10^{2}	30 47 840 30	1.74x10 ⁻³ 1.74x10 ⁻³ 1.74x10 ⁻³ 1.74x10 ⁻³	5.13x10 ⁻⁶ 5.13x10 ⁻⁶ 5.13x10 ⁻⁶ 5.13x10 ⁻⁶ 5.13x10 ⁻⁶	25 25 25 25 25 25 25 25 25	.1 .1 .1 .1 .1 .1	33 33 29 33 29 33 29 29 29
3.	Succinate Ni Cu Zn Cd	40 398 40 120		$ 1 \times 10^{-14} \\ 1 \times 10^{-14} \\ 1 \times 10^{-14} \\ 1 \times 10^{-14} $	6.17x10 ⁻⁶ 6.17x10 ⁻⁶ 6.17x10 ⁻⁶ 6.17x10 ⁻⁶	25 25 25 25	.1 .1 .1 .1	29 29 29 29 29
4.	Glutarate Ni Cu Zn Cd	40 251 40 100		7.24x10 ⁻⁵ 7.24x10 ⁻⁵ 7.24x10 ⁻⁵ 7.24x10 ⁻⁵ 7.24x10 ⁻⁵	9.97x10-6 9.97x10-6 9.97x10-6 9.97x10-6 9.97x10	25 25 25 25	.1 .1 .1 .1	29 29 29 29
5.	l,l-cyclopi Co Ni Cu Zn	ropanedicarbo 3.16x103 7.76x103 9.77x105 3.16x103	oxylate	2.09x10-2 2.09x10-2 2.09x10-2 2.09x10-2 2.09x10-2	7.6x10 ⁻⁸ 7.6x10 ₋₈ 7.6x10 ₋₈ 7.6x10-8 7.6x10	25 25 25 25	.1 .1 .1	34 34 34 34
0.	L, L-Cyclob Co Ni Cu Zn	1.6x10 ² 1.7x10 ² 2.2x10 ² 1.58x10 ² 1.03x10 ⁵ 1.05x10 ² 3. ¹ 4x10 ² 3.02x10 ²	10 10 1.3x10 ³ 30	1x10 ⁻³ 1x10 ⁻³ 1x10 ⁻³ 1x10 ⁻³	2.82x10 ⁻⁶ 2.82x10 ⁻⁶ 2.82x10 ⁻⁶ 2.82x10 ⁻⁶	25 25 25 25 25 25 25 25	.1 .1 .1 .1 .1	33 34 33 34 33 34 33 34 33

.

Table 4: The stability constants for the dicarboxylates of some bivalent metals.

In Table 5, are collected the stability constants for hydroxycarboxylate species of some bivalent metals, which were reported by Thun, <u>et al</u>. (5), Filipović, <u>et al</u>. (7), Warnke and Kwiatkowski (11), Powell and Rowlands (20), Tanaka (30), and Folkesson and Larsson (35). If one compares the stability constants data in Table 5 with Tables 3 and 4, one will see that the stability constant values of divalent metal hydroxycarboxylates are higher than in the case of monocarboxylates, but lower than in the case of dicarboxylates. In this situation, the presence of the hydroxyl group in the carbon chain appreciably raises the stability of the complex species being formed. Thus, bonding between oxygen in hydroxyl groups and a metal ion should be taken into account, although it is less important than the bonding between a carboxyl group and the metal ion. Formation of chelate rings is considered certain in such systems. Figure 3 shows a plot of logK₁ versus atomic number of some divalent transition metal ions which form complexes with butyrate, α -hydroxyisobutyrate and oxalate.

	Metal	ĸ	К ₂	Ka	Temp	μ	Ref.
1.	Glycolate Co	30	6.5		25	2	7
	Ni Cu	49 250 646 229	10.2 59 22		25 25 25 25 25	0 2 2 0 1	36 7 7 36 30

Table 5: The stability constants for hydroxycarboxylates of some bivalent metals

Table 5: (continued)

	Metal	ĸı	к ₂	K _a	Temp	μ	Ref.
1.	Glycolate	(continue			<u></u>		
	Zn	52	14.5		25	2	7
	Cd	32 73	2.2		25 25	2	7 36
2.	Lactate			۱.	2		J °
	Co	23.5 24.7	8.9 8.2	2.30x10 ⁻⁴	25 25	1 1	5 11
	Ni	39 43.4	12 15.5	2.30x10 ⁻⁴	25 25	1 1	5 11
	Cu	310 228	31 68	2.30x10 ⁻⁴	25 25	1 1	5 11
	Zn	40.7 28.8	17 10	2.30x10	25 25	1 1	5 11
	Cd	16.2 24.9	7.4 7.4	2.30x10 ⁻⁴	25 25	1 1	5 11
3.	$oldsymbol{eta}$ -hydroxyp	ropionate	e .				
	Co	10.6	4.2		25	1	11
	Ni	15.6	3.8		25	1	11
	Cu	73.1	21.5		25	1	
	7 ~	309	31		25	L 1	30 11
),	4II a - hudrovu	L∠.) Siohutums	4.9		27	T	ΤT
4.	α -nyur oxy. Co	STODUCATS	03 03	1.73×10^{-4}	25	7	5
	Ni	46.4	13.5	1.73×10^{-4}	25	1	5
	Cu	550	39.8	1.73×10^{-4}	25	1	> 5
	Zn	51.3	30.0	1.73×10^{-4}	25	1	5
	Cd	17.4	8.3	1.73×10^{-4}	25	1	5
5.	Mandelate						
	Co	16.5	3.3		20	2	35
	Ni	25.5	7.1		20	2	35
	Zn	32	11.8		20	2	35
6.	1-hydroxyo	cyclopent	anecarbo	xylate ,			
	Co	37	10	1.13×10^{-4}	25	.1	20
	Ni	66	20	1.13×10^{-4}	25	.1	20
	Cu	630 631	60 60	1.13x10 ⁻⁴	25 25	.1 .1	20 30
	Zn	77	20	1.13×10^{-4}	25	.1	20
	Cd	28	8.2	1.13x10 ⁻⁴	25	.1	20

۱

.

ı.

21

....

Figure 3. Divalent transition-metal complexes with 3 types of ligand

B. Rare-Earth Hydroxycarboxylates

1. Bonding in lanthanide complex species

The coordination chemistry of the rare-earth metal ions can, with profit, be contrasted and compared with that of the d-type transition metal ions. The stabilities of coordination compounds of the d-type transition metal ions are related to participation of the d electrons in the metal-ligand bond through hybridization of metal electronic orbitals and overlaps of these hybrid orbitals with appropriate ligand orbitals which one knows as covalent bonds. Because electrons in the 4f orbitals in the rare-earth metal ions are effectively shielded from interaction with ligand orbitals by electrons in the 5s and 5p orbitals, hybridization does not occur. Significant cation-ligand attractions are thus largely electrostatic in character (ionic bonds). The absence of significant interactions between ligand and 4f orbitals is supported by a wealth of experimental evidence, especially magnetic and spectral data.

Paramagnetic behavior among the tripositive rare-earth metal ions is due to the presence of unpaired 4f electrons. Since these electrons are well shielded from external influences, both their spin and orbital motions are significant in determining the overall observed susceptibility or moment of a complex containing such a species should indicate clearly whether or not these 4f electrons are involved in bond formation. Moeller and Horwitz (37) compared the magnetic susceptibility of complexes LnL (where Ln refers to Nd(III), Sm(III), Eu(III), Gd(III), or Y(III); and, L is ethylenediaminetetraacetate, N-hydroxyethylethylenediaminetriacetate or 1,2-diaminocyclohexanetetraacetate) with those calculated for the free

gaseous ions by Van Vleck and Frank (38), and surmised that the 4f electrons could not be of great significance in bond formation in these chelates. Fritz, et al. (39, 50) also observed only small effects in the magnetic susceptibility in complexes LnL (where Ln refers to lanthanide(III) cations and L is ethylenediaminetetraacetate or acetylacetone) at low temperature. Axtmann (41) concluded from proton nuclear magnetic resonance spectra that a hydrated trivalent lanthanide cation in aqueous solution involved ion-dipole electrostatic bonding with water molecules. His argument was based on the linearity between the logarithms of the acidity constants of the hydrated cations and the chemical shift.

The sharply defined absorption bands, characteristic of all the tripositive lanthanide ions except lanthanum and lutetium ions, are associated with forbidden transitions among the 4f orbitals that are permitted, because of the electric effects of fields imposed by the surrounding anions (42). The overall spectrum of a given ion, therefore, is altered only in the intensities of certain absorption peaks and in altered resolution of complex bands as the anion environment is altered. However, this situation is not the same as with d-transition elements where the d electrons (being external) take an active part in bonding, producing a change in the environment of the central metal ion that frequently causes a substantial variation in absorption spectra. Shielding of the 4f electrons by a complete $5s^25p^6$ octet makes such effects much less drastic in the lanthaide series. Moeller and Horwitz (37) found no new bands in different parts of the spectrum in complex species of LnL (where Ln was Pr(III), Nd(III), Sn(III) or Er(III) and L was ethylenediaminetetraacetate, N-hydroxyethylethylenediaminetriacetate or 1,2-diaminocyclohexanetctraacetate) when

compared with the spectrum of LnCl₃. This is a further indication that the 4f electrons are not involved in bond formation in such chelates; and no correlation exists between alterations in absorption characteristics and chelate stabilities.

Further evidence for the ionic model mentioned above is the absence of π -bonding interactions in the cyclopentadiene derivatives of these ions shown by Wilkinson and Birmingham (43,44). On the other hand, Jorgensen, <u>et al</u>. (45,46) pointed out that the possibility of covalent interactions cannot be completely excluded, because there is evidence based upon nephelauxetic effects of some degree of covalency in some of the complex species. Ephraim and Block (47,48) also found a red shift of the bands in absorption spectra for the anhydrous lanthanide (Pr^{+3} , Nd^{+3} , Sm^{+3}) acetylacetone chelates compared to the aquo ions. The anhydrous fluorides showed some blue shift with respect to the aquo ion. The phenomenon of red shift was explained by Ephraim partly as the expansion of the lanthanide orbital radius due to covalent bonding and partly as contraction due to highly electrostatic bonding. Jorgensen named this effect the nephelauxetic effect.

2. Interpretation of trends in complex stabilities

Some useful data for the rare earth metals and trivalent rare earth cations are presented in Table 6 (49), they are useful for the review in this section and elsewhere. One can see from Table 6 that only the electronic configuration of the cation and its radius are important at this moment for evaluating the effects of progressive changes in complex-ion formation.

Symbol	Z	Elec.	Conf.	-e ^o (V)	Electro- negativity	Met. Rad. Ln(Å)	Cry. Rad.
		Ln	Ln ⁺³				шп (н)
La	57	4f ⁰ 5a ¹ 68	s ² 4f ⁰	2.52	1.1	1.89	1.061
Ce	58	4f ² 68	5 ² 4f ¹	2.48	1.1	1.83	1.034
Pr	59	4f ³ 68	3^{2} $4f^{2}$	2.47	1.1	1.84	1.013
Na	60	4 f ⁴ 68	5^{2} $4f^{3}$	2.44	1.2	1.83	0.995
Pm	61	4f ⁵ 68	3^{2} $4f^{4}$	2.42	1.2		0.979
Sm	62	41 ⁶ 65	s ² 4f ⁵	2.41	1.2	1.81	0.964
Eu	63	4f ⁷ 69	5 ² 4f ⁶	2.41	1.1	1.99	0.950
Gd	64	4f ⁷ 5d ¹ 68	s ² 4f ⁷	2.40	1.2	1.81	0.938
Tb	65	4f ⁹ 68	5 ² 4f ⁸	2.39	1.2	1.80	0.923
Dy	66	4f ¹⁰ 69	s ² 4f ⁹	2.35	1.2	1.80	0.908
Ho	67	41 ¹¹ 68	5 ² 4î ¹⁰	2.32	1.2	1.79	0.894
Er	68	4f ¹² 69	5 ² 4f ¹¹	2.30	1.2	1.78	0.881
Tm	69	4f ¹³ 69	s ² l _{lf} 12	2.28	1.2	1.77	0.869
Yb	70	4f ¹⁴ 68	s ² 4f ¹³	2.27	1.1	1.9 ⁴	0.858
Lu	71	4f ¹⁴ 5a ¹ 6	68 ² 4f ¹⁴	2.25	1.2	1.75	0.848
Y	39	4a ¹ ;	5s ²	2.37	1.3	1.78	0.880

Table 6: Numerical data for rare-earth metals and trivalent rare-earth cations

Ionic bonds between rare-earth cations and ligand anions were suggested in the previous section. If this type of bonding is significant, then in terms of an extension of the Born relationship (50, 51)

$$E = \frac{Z^2}{2r} \left(1 - \frac{1}{D}\right)$$

where E is the energy change on solvation (complexation) of a gaseous ion of charge Z and radius r in a medium of dielectric constant D, a generalized increase in the stabilities of such chelates with decreasing crystal radii and stabilities of yttrium complexes comparable with those of the analogous erbium and holmium species may be expected. Because of the "lanthanide contraction" (due to the not quite perfect screening effect of the f electrons) one should expect to see the bond strength increase linearly with increasing ionic potential Z^2/r and a slight discontinuity at gadolinium.

In nearly all complexes which have been studied, this is precisely what is found for the values of $\log K_1$ for complexes of the lighter rare earths, lanthanum through samarium or europium. This simple relationship is, nowever, not always found when the heavier rare earths, terbium to lutetium, are considered. The trends in the formation constant data for the heavier rare earths can be divided qualitatively into three groups. The first group contains those ligands for which there is a regular increase in the chelate formation constants (glycolate, lactate, iminodiacetate, α -hydroxyisobutyrate, nitrilotriacetate, ethylenediamine-N,N'diacetate, ethylenediaminetetraacetate and l,2-diaminocyclohexanetetraacetate). The second group is comprised of ligands for which the chelate formation constants of the heavier rare earths have very nearly the same values. Such ligands include acetate, methoxyacetate, acetylacetone, dipicolinate and N-hydroxyethylethylenediaminetriacetate. The last group

is represented by the 2,2'-bis [di(carboxymethyl)amino]diethyl ether ligand and diethylenetriamine-N,N,N',N',N"-pentaacetate. The lanthanide chelate formation constants of this last group increase at first and then show a slight decrease to lutetium.

An example of each group will be discussed here. Aminopolycarboxylates have been chosen instead of hydroxycarboxylates, because considerable thermodynamic data is available for aminopolycarboxylates. Formation constants and thermodynamic functions of rare-earth metal N-hydroxyethylethylenediaminetriacetate (HEDTA) (52, 53, 54), ethylenediaminetetraacetate (EDTA) (55); and diethylenetriaminepentaacetate (DTPA) (56, 57) species are summarized in Table 7. LogK versus ionic potential data for these three compounds have been plotted in Figure 4.

Figure 4 shows a fairly linear relationship between $\log K$ and Z^2/r for the lighter rare earths in each case (so the electrostatic bond picture is not unreasonable); but other factors must be involved in the cases of the heavy rare-earth species for which non-linear relationships are seen. It can be argued that the gadolinium break is related to the corresponding discontinuity in crystal radius at gadolinium, however, this discontinuity appears too small to account for the substantial anomalies in formation constants observed at this point.

Complexes	logK	∆ G ^O	∆ H ^O	∆s ⁰	$\Delta s^{0} + \bar{s}^{0}_{Ln}$
		(Kcal/mole)	(Kcal/mole)	(e.u.)	(e.u.)
Ln-HEDTA La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	13.46 14.11 14.61 14.86 15.28 15.35 15.22 15.32 15.30 15.32 15.32 15.42 15.59 15.88 15.88	-18.38 -19.27 -19.95 -20.29 -20.87 -20.96 -20.78 -20.92 -20.89 -20.92 -21.06 -21.29 -21.68 -21.68	-2.28 -3.06 -4.45 -4.25 -4.65 -4.81 -4.66 -3.39 -2.12 -1.14 -0.32 0.92 0.36 0.22	54.2 54.2 52.0 53.8 54.4 54.1 54.1 58.8 62.8 66.3 69.4 74.5 74.0 73.4	20 19 15 15 15 14 12 16 19 21 25 29 27 26
Y Ln-EDTA La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y	14.65 15.19 15.45 15.76 16.05 16.53 16.66 16.82 17.32 17.78 18.04 18.37 18.64 18.99 19.14 18.09	-20.00 -20.72 -21.07 -21.49 -21.89 -22.54 -22.72 -22.94 -23.62 -24.25 -24.61 -25.06 -25.44 -25.91 -26.11	-0.29 -0.80 -0.47 -0.80 -0.60 -0.80 -0.16 0.43 1.50 1.50 1.25 1.50 1.58 1.32 0.64	66.1 66.8 69.1 69.4 70.7 72.9 75.7 78.4 84.3 86.3 86.3 86.7 89.1 90.6 91.3 89.7	19 32.1 32.8 31.9 32.2 32.6 34.6 36.6 41.6 42.7 42.2 43.8 44.5 44.5 42.2
Ln-DTPA La Ce Pr Nd Sm Eu Gd Tb	19.48 20.50 21.07 21.06 22.34 22.39 22.46 22.71	-26.57 -28.74 -29.47 -30.48 -30.55 -30.65 -30.99	-5.7 -7.1 -5.8 -8.2 -8.1 -7.5 -7.7	70 72.0 79.4 74.7 75.3 77.6 78.1	35.3 34.5 40.9 34.4 34.2 35.8 35.4

Table 7: Thermodynamic functions of formation of rare earth-aminopolycarboxylate complexes

Table 7	: (continued)
---------	-----	------------

Complexes	logK	∆ G ^O (Kcal/mole)	∆H ⁰ (Kcal/mole)	∆ S ⁰ (e.u.)	$ \Delta S^{0} + S^{0}_{Ln} $ (e.u.)
Ln-DTPA (c	ontinued)				
Dy Ho Er Tm Yb Lu Y	22.82 22.78 22.74 22.72 22.62 22.44 22.05	-31.14 -31.08 -31.02 -31.00 -30.87 -30.61 -30.08	-8.0 -7.6 -7.3 -5.5 -5.5 -4.6 -5.2	77.6 78.7 79.6 85.5 85.1 87.2 83.4	34.0 34.2 34.3 39.4 38.3 40.7 36.2

Staveley and Randall (58) and Choppin and Choppoorian (59) suggested a possible existence of crystal-field effects in rare-earth metal chelates in the EDTA type ligand, since a change in the logK values with increasing atomic number is observed as in the d-type transition elements. There is indeed a break at the gadolinium ion, for which there should be no crystelfield stabilization, that is possibly why the yttrium chelates do not quite fall in the place predicted from the radius of the yttrium ion. Since both gadolinium and yttrium have zero crystal-field stabilization, however, it would be expected on the basis of size that the yttrium complex of a given ligand would always be more stable than the corresponding gadolinium complex. Such is not the case. In addition, it is seen that, when the chelates of two other ligand types (HEDTA and DTPA) are considered, the crystal-field modification of the electrostatic argument does not hold, since there is no regular increase in logK values.

Figure 4. LogK as a function of Z^2/r for various rare-earth complexes
Both the coordination number of the rare-earth metal ions and the number of coordination sites occupied by each ligand involved seem to play a role when one considers thermodynamic and statistical ratio data. However, the interpretation of the trends observed in such data is at most only partly satisfactory. The trends in the formation constants of the 2:1 and higher complexes are much more difficult to systematize since in many of these species there is good evidence for assuming that steric effects are important, and also, for the simple complexes, the errors in the measurements are so large that it is difficult to decide which trends are real. Without a doubt, the rare-earth metal ions coordinate predominantly to oxygen donors, and very little work has been done with nitrogen donors, since the basicity of most of these compounds is such that rareearth metal hydroxides precipitate before coordination extensively occurs (60).

Wheelwright, <u>et al</u>. (61) found the formation constants of the trivalent lanthanide ions with EDTA to increase generally with atomic number; however, a "plateau" occurs in the region Eu-Gd. These authors suggested as an explanation for this plateau, that the progressively smaller radii of the lanthanide ions in the series from La to Lu imposes increasing steric hindrance on the interaction between EDTA and the ions. They also suggested that all six donor atoms of EDTA are coordinated to the lanthanons La to Gd; but that after Gd, only five of the six could fit around the central ion, leaving one molecule of water still attached. From absorption spectra of protonated Nd and Y-EDTA complexes, Moeller, <u>et al</u>. (62) suggested that Nd is probably pentacoordinated by EDTA rather than 6-coordinated. The change in coordination after Gd would then be from

pentacoordinated to tetracoordinated, rather than from 6- to 5- as proposed by Wheelwright.

Betts and Dahlinger (55) obtained ΔH^0 , ΔG^0 , and ΔS^0 values of formation of chelate species from EDTA and rare earths (Table 7). The major contribution to stability is seen to be the entropy change. Of more interest, however, is the partial molal entropy of the chelate, \bar{s}_{LnY}^0 . The authors obtained this value by approximation in terms of $\Delta S^0 + \bar{s}_{Ln}^0 + 3$ ($\Delta S^0 = \bar{s}_{LnY}^0 - \bar{s}_{Ln}^0 + \bar{s}_{Y-}^0$). The entropy of a simple hydrated ion is determined primarily by its charge and radius, while the entropies of complex ions have additional contributions arising from structural factors (63). Table 7 indicates that \bar{s}_{LnY}^0 for EDTA chelates in the La-Gd region and in the Tb-Lu region differs by 6-10 eu. Constancy within each region was interpreted as indicating constancy of structure in that region, and the difference between the two regions was ascribed to alteration in the polydentate character of EDTA. Entropy data correlated quite well with a change from pentadentate to tetradentate in those two regions.

However, one can see from Table 7 that, the thermodynamic data in the HEDTA (52, 54) and DTPA (54, 56, 57) cases suggested no comparable explanation for the trends in stability. On the other hand, it must be emphasized that the errors in evaluation of ΔH^0 and ΔS^0 from formation-constant data by the methods used are substantial, and small differences which might be significant are thus covered up. Exact thermodynamic interpretations that can reflect steric effects must thus await more accurate evaluation of enthalpy changes.

Powell and Burkholder measured the ion-exchange separation factors for the rare-earths with EDTA (64) and HEDTA (65) as eluent at $92^{\circ}C$ and suggested that at room temperature EDTA chelates form a nine-coordinated chelate species $[Ln(OH_2)_3Ch]^-$ from La to Nd (perhaps Pm) in which a number of hydrogen bonds form between uncoordinated carboxyl oxygen atoms and coordinated water molecules, and tend to enhance the chelate stability above that expected to be due to a simple hexadentate attachment. For the heavy rare earths (Tb to Lu) and Y, an uncomplicated nine-coordinated chelates species [Ln(OH₂)₃Ch]⁻ receives no stability contribution at all from hydrogen bonding. A gradual change in the number of existing hydrogen bonds from Sm to Gd was suggested, accompanied by progressive reduction in the nominal dentate character of the ligand anion to a minimum value of six. In the HEDTA chelate case, it was suggested that the HEDTA ligand always bonds pentadentately to the heavy lanthanons (Lu to Er), but that it attaches hexadentately to all lighter lanthanons larger than Eu (the 6th donor atom of HEDTA is the oxygen of the hydroxyethyl group). The intermediate lanthanon (Ho-Eu) chelates comprise a transitional set in which the character of the HEDTA anion increases gradually from pentadentate to hexadentate. At 92° it may be presumed that both the hydrogen bonds in the case of EDTA and the bond of hydroxyethyl group in the case of HEDTA are broken, lowering the formation constants of the lighter lanthanons at this temperature for both cases.

Besides the ion-exchange separation which showed that, as lanthanons decrease in radius from La to Lu, the coordination number of the ligand tends to decrease by one due to strains introduced, other data exist which suggest that a change in ligand dentate character occurs somewhere between Sm and Ho depending on the chelating agent. Powell also invoked Bjerrum's statistical ratio theory to explain trends in the formation constants of

the 2:1 and higher complexes which are much more difficult to systematize than are the 1:1 complexes because of the weak complexes represented. This subject will be discussed more extensively in a later section.

Spedding, <u>et al</u>. (66-69) studied the properties of dilute aqueous solutions of ordinary rare-earth electrolytes, and strongly suggests that the basic coordination number of the lambhanide cation does increase by one unit as the radius of the cation increases from that of Dy^{+3} to that of Nd⁺³. Spedding has suggested that the smaller cations $(Dy^{+3} \text{ to } Lu^{+3})$ exhibit an 8 coordination number, and that a 9 coordination number is probable in the larger cations $(La^{+3} \text{ to } Nd^{+3})$. Powell and Burkholder (65) proposed that the change in coordination number of the freely hydrated rare-earth cation with radius is more likely to be from 9 to 10 than from 8 to 9, because the X-ray crystallographic data of Fitzwater and Rundle (70) reveals 9 nearest-neighbor oxygen atoms (all donated by water molecules) about the lanthanon in crystalline $Er(C_2H_5OSO_3)_3 \cdot 9H_2O$, as well as in $Pr(C_2H_5OSO_3)_3 \cdot 9H_2O$, $Y(C_2H_5OSO_3)_3 \cdot 9H_2O$ and $La(C_2H_5OSO_3)_3 \cdot 9H_2O$.

Bertha and Choppin (71) studied the entropies of hydration (ΔS_h°) of Ln^{+3} in the lanthanide iodates, and found the values of ΔS_h° of -81 eu for La-Pr and -96 for Dy-Lu. The authors concluded that this would be consistent with a model of two differently sized hydration spheres, one associated with the La-Pr ions and a larger one with the Dy-Lu ions. The ions from Nd through Gd form a transition group.

3. Bjerrum's statistical ratio theory

Although it can be misleading to infer too much about structures in solution from crystallographic data, such information gives some idea of

the possible structures and coordination numbers of the rare-earth complexes in solution as well as the number of donor sites of the ligands utilized in bonding. Consequently, the structures of known crystalline complexes will be reviewed before speculating further.

10-coordinate lanthanide chelate $HLa(H_2O)_{L}EDTA$ and 9-coordinate lanthanide chelates $MLa(H_2O)_3EDTA$ (M = ammonium, sodium or potassium) have been studied by X-ray analysis (72-74). Both $HLa(H_2O)_4EDTA$ and $MLa(H_2O)_3$ EDTA tend to exhibit the eight vertices of a dodecahedron structure. In the second chelate type, the authors predicted that if they replaced La^{+3} by smaller Ln^{+3} ions, a transition from 9-coordinate MLn(OH₂)₃EDTA (La-Sm) to 8-coordinate MLn(OH₂)₂EDTA (Tb-Lu) would occur. They suggested that the chelates of Eu^{+3} and Gd^{+3} would be transitional in coordination type between a 9-coordinate and 8-coordinate. Martin and Jacobson studied the crystal structure of nitrilotriacetatodiaquopraseodymium(III) monohydrate $(Pr(H_0)_NTA \cdot H_0)$ (75) and nitrilotriacetatodiaquodysprosium(111)dihydrate Dy(H₂0)₂(NTA)·2H₂0 (76). The authors found that in the first case, Pr is 9-coordinate with 6 carboxylate oxygen atoms, 2 waters, and one nitrogen in the coordination sphere, the structure can be described as either a distorted, tricapped, trigonal prism or a distorted, capped, square antiprism. For Dy(H₂O)₂NTA·2H₂O, Dy is 8-coordinate with 5 acetate oxygen atoms, 2 waters and one nitrogen atom in the coordination sphere, the eight donor atoms reside at the corners of a distorted dodecahedron with triangular faces.

The structure of trichlorotris(hexamethylphosphoramide)praseodymium (III) (77) consists of discrete monomeric units comprising a Pr(III) ion coordinated to 3 hexamethylphosphoramide molecules via the oxygen atoms

and to 3 chloride ions forming an octahedral coordination sphere (C_{2v}) .

Grenthe determined the structures of $Ln(HOCH_2COO)_3$ from X-ray intensity data and found that in the structure of the heavy rare-earth (Tb-Lu) chelates such as $Er(HOCH_2COO)_3 \cdot 2H_2O$ (78), there are two non-equivalent metal atoms in the structure. They are located on two-fold axes and are each coordinated by 8 oxygen atoms forming distorted dodecahedra. One metal ion is coordinated by four hydroxyacetate ligands forming a discrete anionic complex, the other by two hydroxyacetate and four waters forming a discrete cationic complex. The complexes are joined by hydrogen bonds.

Identical structures are obtained in the cases of $Gd(HOCH_2COO)_3$ (79) and $Eu(HOCH_2COO)_3$ (80). The structure of $Eu(HOCH_2COO)_3$ is shown in Figure 5. The metal ion is 9-coordinate with a coordination polyhedron of the tri-capped trigonal prism type. All ligands are bonded as chelates with the hydroxy oxygen in the equatorial and one of the carboxylate oxygens at a corner position of the prism. The three remaining corners are occupied by carboxylate oxygens from ligands which are chelated to neighboring europium atoms.

One can see that the coordination number of lanthanide chelates varies between 6-10 in crystals. The coordination number of the central metal ion changes in some chelates series, but remains constant across the series (from Lu to La) in others. Powell and Burkholder (65) proposed from these X-ray crystallographic data and ion exchange separation data that in solution the change in coordination number of the freely hydrated rare-earth cation with radius ought to be from $10(La^{+3}-Nd^{+3})$ to $9(Dy^{+3}-Lu^{+3})$.

Powell and Rowlands (81) measured the stability constants of rare earths with 1-hydroxycyclopentanecarboxylic acid (HCPC), and found that K_1/K_2

are 4.93 and 3.29 for larger rare-earths (La-Nd) and smaller rare-earths (Tb-Lu), respectively. The authors compared their data with a 9-coordinated trigonal prism (D_3h) model for the rare-earth metal ions, S values of which are shown in Table 2, being 4.92 and 3.27 for the tridentate and bidentate ligand cases, respectively. They concluded that in this system HCPC bonded tridentately with lighter rare-earths (La-Nd) and changed to bidentate in a heavier rare-earths (Tb-Lu).

Lanthanide 2-hydroxy-2-methylbutanoate(EMG) chelate stabilities were studied by Powell, <u>et al</u>. (82), and K_1/K_2 values were found to be 6 for La to Nd and 4 for Sm to Lu. The conclusions drawn were that, EMG also functions tridentately in bonding to larger lanthanons but only bidentately to the smaller ones. Powell also calculated E and R values in these two systems and found that 1.0 < E < 1.5 for the process $Ln^{+3} \rightarrow LnL^{+2} \rightarrow LnL_2^+$ (L are HCPC and EMG), that 1.0 < R < 1.5 in the case of HCPC, and that 1.22 < R < 1.83 with EMG. In both systems, the values of $f(\mu)$ at $\mu = 0.1$ (the activity correction to the K_1/K_2 ratio) was estimated to be about 0.67 via Bjerrum's equation $(K_1/K_2 = T = SERf(\mu))$.

4. Formation constants

The most strong lanthanide complexes are formed between lanthanides and aminopolycarboxylates. Carboxylates or hydroxycarboxylates are expected to form but weak complexes with lanthanides (25, 83). Because of the imprecise nature of most data on lanthanide aminopolycarboxylate chelates stability constants found in the literature, one should not expect to find more agreeable data in cases of carboxylates or hydroxycarboxylates. Rare-earth hydroxycarboxylate chelate stability constant data will be reviewed here, together with those of some species formed by mono and dicarboxylate ligands. Sillen and Martell (26) and Moeller, <u>et al</u>. (84) have published an extensive compilation of stability data which includes much of the information on rare-earth stability constants.

Formation constants of lanthanides with acetate, propionate and isobutyrate in Table 8, reported by Kolat and Powell (17), Powell, <u>et al</u>. (85), and Stagg and Powell (86) show that the ligand affinity for rareearth ions decreases in the order acetate>propionate> isobutyrate. As one can see, the linnear relationship between the basicity of the donor group and the chelate stability, which has been found to hold in a large portion for most transition metal chelates, does not hold for these simple carboxylates of trivalent lanthanides. Choppin and Graffeo (87) found almost the same values for the formation of the lanthanide propionate and isobutyrate complexes at 25° and ionic strength of 2.0, but the values of Δ S and Δ H for the complex formation of isobutyrate were reported to be higher than with propionate. The authors concluded that the bulkier isobutyrate ion should disrupt the inner hydration sphere of metal ions more than propionate would. Grenthe (88) shown from his thermodynamic data that acetate ion acts as a unidentate ligand in the same way as thioglycolate.

Some formation constants for the dicarboxylates of trivalent lanthanides are summarized in Table 9. One should expect to see the most stable complex five-membered ring formed between oxalate anion and lanthanide cations in such systems, and as a matter of fact, the oxalate ion has been used for the precipitation of the rare-earths in a gravimetric method of analysis. In complex species formed between 1:1 malonate homologues and lanthanons, the formation constants for the heavy lanthanons $(Er^{+3}-Lu^{+3})$

Metal	Ace	Acetate		onate	Isobuty	rate
	ĸ	K ₂	ĸ	к ₂	к _l	к ₂
La	105	17.2	78	15	43.8	3.3
Ce	124	27.5	112	17	61.1	3.4
Pr	150	28.1	132	22	82.9	18.1
Nd	166	34.8	157	21	95.4	13.1
Sm	201	38.4	161	31	112	18.5
Eu	202	39.7	168	33	94.6	7.7
Gđ	146	39.8	122	30	73.7	25.8
Tb	118	39.3	99	39	65.5	10.5
Dy	108	40.4	85	33	55.1	6.7
Ho	101	39.3	90	32	49.7	16.9
Er	102	38.8	87	35	49.3	7.8
Tm	104	38.9	81	33	49.5	3.9
Yb	107	43.3	85	28	60.7	20.8
Lu	111	43.6	100	34	65.1	3.2
Y	94	42.7	75	15	39.8	13.0

Table 8. The stability constants for the monocarboxylates of trivalent lanthanides.

acetate (17): $K_a 2.80 \times 10^{-5}$, 20° and $\mu = 0.1$ propionate (85): $K_a 2.21 \times 10^{-5}$, 20° and $\mu = 0.1$ isobutyrate (86): $K_a 2.30 \times 10^{-5}$, 25° and $\mu = 0.5$

increase in the sequence: 1,1-cyclopentanecarboxylate < malonate < diethylmalonate < di-n-propylmalonate. Powell and Johnson (91) and Powell, et al. (92) suggested that the steric effect of the alkyl groups is more important than the inductive effect, because the -OOC-C-COO- bond angle is important in the complex formation.

Metal	Oxalat	e	Digly	colate	l,l-cyclopenta	anecarboxylate	
	K _l x10 ⁻⁶	_К 5	K ₁ x10 ⁻⁵	K ₂ ×10 ⁻⁴	K _l x10 ⁻⁴	K ₂ x10 ⁻²	
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y	0.45 0.78 2.00 3.32 4.17 9.12 4.90 3.80 3.55 3.80 3.63 4.27		0.85 1.44 2.16 2.82 3.54 3.35 2.53 2.11 2.05 1.90 2.20 3.11 3.56 4.34 1.75	0.30 0.58 0.78 1.13 2.21 3.28 3.36 4.51 4.68 4.71 4.77 5.37 6.49 8.16 3.32	1.49 1.51 1.82 1.92 1.77 1.75 1.76 1.84 1.65	3.38 3.10 3.29 3.31 3.11 3.33 3.76 4.16 4.42	
oxalate	(89) : K _{aj}	6.45	x 10 ⁻² , K _a	6.17 x 1	$.0^{-5}$, at 25° and μ	= 0.5	
diglycolate (90): K_{a_1} 1.60 x 10 ⁻³ , K_{a_2} 1.82 x 10 ⁻⁴ , at 20 ^o and μ = 1.0							
l,l-cycl	opentaneca.	rboxyl	ate (91) :	K_ 9.0 x	: 10 ⁻⁴ , K _{a2} 1.56 x	10 ⁻⁶ , at 25 ⁰	
and	μ = 0.1			-	-		

Table 9. The stability constants for the dicarboxylates of trivalent lanthanides

Metal	malor	nate		lmalonate	di-n-prop	ylmalonate
	K _l x10 ⁻⁴	K ₂ x10 ⁻²	K ₁ ×10 ^{-l4}	K ₂ x10 ⁻²	K _l ×10 ⁻⁴	K _l x10 ⁻²
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y	0.49 0.68 0.82 0.88 1.56 2.03 2.09 2.74 3.00 2.45 2.63 2.65 3.40 2.82 2.51	1.6 2.2 2.5 3.0 4.5 4.9 4.4 5.1 5.0 3.8 4.2 3.9 5.6 4.8 4.4	0.41 0.61 0.81 1.03 2.13 2.92 3.09 4.28 4.30 4.30 4.60 5.00 5.70 4.87 4.00	2.2 3.4 3.8 4.1 3.9 3.6 4.1 4.0 3.4 3.9 4.1 4.9 5.2 2.8	0.46 0.92 1.04 1.14 2.83 3.72 3.82 5.39 6.02 5.25 5.41 5.71 6.52 6.08 5.16	4.5 8.2 10.0 7.8 7.1 5.2 5.7 4.9 3.6 4.2 4.3 5.6 5.6 4.5
malonate	(92): K _a	2.47 x 10	³ , K _a 5.34	$x 10^{-6}$, at	25 [°] and μ =	0.1
d <u>i</u> ethy <u>l</u> m	alonate (9	¹ 2): K <u>a</u> ll	<u>0 x 10⁻, K</u>	$\frac{1.05 \times 10}{2}$) ⁻⁷ , at 25 ⁰	and $\mu = 0.1$
di-n-pro	pylmalonat	e (92) : K _a	1.50 x 10 1	⁻² , K _a 7.12	2×10^{-1} , at	25 ⁰ and

 $\mu = 0.1$

Some of the stability constants of the lanthanide hydroxycarboxylate complexes are summarized in Table 10. The data have been collected under the same conditions $(25^{\circ} \text{ and } \mu 0.1)$ if available. The most work has been done on α -hydroxyisobutyric acid (59, 86, 93, 94, 95, 96), lactic and glycolic acids (59, 94, 96, 97, 98, 99,). Eeckhaut, <u>et al.</u> (100), and Thun and Verbeck (101) reported some stability constants of the lanthanide dialkylsubstituted glycolate homologous complexes, but the data are not complete.

Table 9. (Continued)

The monoalkylsubstituted glycolates, such as methylglycolate (MG), ethylglycolate (EG), isopropylglycolate (PG) and t-butylglycolate (BG) together with l-hydroxycyclopentanecarboxylate (HCPC) are plotted in Figure 6. The stability constants increase as BG < PG < EG < HCPC < MG, the steric effect of alkyl group is considered to be much greater than the inductive effect in those systems.

Metal		3	M	MG		EG	
	ĸl	K ₂	ĸl	К2	ĸ	К ₂	
La Ce Pr Nä Sm Eu Gá Tb Dy Ho Er Tm Yb Lu Y	355 495 600 780 820 860 620 600 840 980 1010 1135 1350 1400 610	49 71 80 92 126 137 116 123 111 112 153 188 174 214 123	400 570 705 740 760 890 780 790 1020 1050 1460 1550 1700 1875 1040	55 93 113 126 162 169 141 203 220 250 288 329 388 405 216	212 284 388 438 566 593 605 722 824 875 995 1110 1290 1390 724	6 6 78 85 91 129 133 144 175 202 248 267 298 342 365 210	
glycolate methylgly	•G (94): K _a colate•MG (9	2.72 x 10 94): K 2.3	$^{.4}$, at 20° and $^{.3}$ x 10 ⁻⁴ , at $^{.4}$	nd μ 0.1 t 20 [°] and μ	0.1		

Table 10. Stability constants for the hydroxycarboxylates of trivalent lanthanides

Metal	P	<u>C</u>	BG		HCP	с
	ĸl	к ₂	ĸl	к ₂	ĸı	К ₂
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y	149 197 237 270 380 427 433 520 616 654 740 830 948 1027 541	58 71 89 93 104 115 122 151 166 182 200 217 246 253 153	120 156 164 210 300 330 390 420 500 520 600 620 720 740 421	39 48 37 54 83 94 82 126 140 164 173 207 211 235 126	238 324 402 463 615 636 698 792 958 1050 1163 1288 1497 1663 995	48 67 83 91 140 170 167 230 293 302 381 409 474 528 273
isopropylg	lycolate - F	og (102): K _a	2.03×10^{-4}	, at 25° as	nd <u>µ</u> 0.1	
t-butyigly	colate - BG yclopentanec	(102): K _a l arboxylate	- HCPC (81)	at 25 ⁻ and : K _a 1.13	u 0.1 x 10 ⁻⁴ , at	25 ⁰
and μ	0.5					

•

_ _ _ _ _

.....

Table 10. (Continued)

Metal	HI	BA	EM	G	EE	<u>G</u>
	кl	К2	κ _l	К2	Кl	К ₂
La	290	62	220		102	29
Ce	367	96	320	53	111	44
Pr	507	92	350	59	167	52
Nd	579	102	450	69	204	70
Sm	771	165	630	140	485	99
Eu	946	209	800	200	687	111
Gd	991	230	. 088	220	822	110
Тb	1239	302	1200	299	1060	142
Dy	1360	332	1450	350	1250	150
Ho	1592	409	1720	429	1340	158
Er	1756	540	2090	539	1440	181
Tm	2009	553	2320	577	1530 1540	19'
Yb	2280	652	2690	669	1740	204
Lu V	2565	734	2790	703	1790	22:
T	7333	377	TOOO	202	TTOO	130
-hydroxyi	sobutyrate	- HIBA (93): K _a 1.63 x	: 10 ⁻¹⁴ , at :	25 [°] and μ 0.	1
hyimethy	lglycolate	- EMG (82)	: K _a 1.86	$x 10^{-h}$, at	25° and μ ().1
iethylgly	colate - El	EG (102):	K 2.38 x 10	$^{-4}$. at 25 ⁰	and <i>u</i> 0.1	

Table 10. (Continued)

Metal	THI	3	BHMP		HP	
	ĸl	к2	ĸl	к ₂	^K l	К2
La Ce Pr Nd Sm Eu Gd To Dy Ho Er Tm Yb Lu Y	249 409 559 646 720 631 486 519 454 511 619 711 789 874 451	30 69 88 65 164 158 200 145 164 153 110 130 148 176 104	114 201 236 299 288 236 201 186 191 188 202 197 217 147	30 39 39 47 49 43 40 44 44 40 42 41 43 36	36 37 42 46 56 44 41 35 28 30 21 28 32 25 27	
α, β, β' -tr $\mu 0.9$ bis-hydrox and μ β -hydroxy	ihydroxyiso 5 xymethyl-2, 1 0.1 propionate	butyrate - ' 2-popionate - HP (104) :	IHIB (86) : s - BHMP (10 : at 25 ⁰ an	K _a 5.15 x 03): K _a 4. d μ 2.0	10^{-4} , at 3	25 ⁰ and at 25 ⁰

Table 10. (Continued)

Figure 6. ${\rm K}_1$ as a function of ionic radius for hydroxycarboxylate rare-earth complexes

Figure 7. K as a function of ionic radius for hydroxycarboxylate rareearth complexes

Figure 7 shows a plot of the dialkylsubstituted glycolates, such as α -hydroxyisobutyrate (HIBA), ethylmethylglycolate (EMG) and diethylglycolate (EEG). The trends of the stability constants in this system are very interesting, because the stability constants increase as EEG < EMG < HIBA in the lighter lanthanides, but increase in the order EEG < HIBA < EMG for the heavier lanthanides. Powell's argument (81, 91, 92) on dicarboxylate and l-hydroxycyclopentanecarboxylate systems can be used in explaining in this system. When the steric effect is increased by increasing the bulk of the alkyl groups from methyl-methyl < ethyl-methyl < ethyl-methyl, this steric effect will make the bond angle -OOC-C-OH decrease in the order HIBA>EMC> EEG. The smaller ionic radius of the heavier lanthanides. In the case of EEG, one is led, therefore, to hypothesize that, the -OOC-C-OH bond angle is too small even in the case of the heavier lanthanides.

The plot of α , β , β' -trihydroxyisobutyrate (THIB) and bis-hydroxymethyl-2,2-propionates (BHMP) in Figure 7 shows that the hydroxy groups of β -carbon atoms are not bonded to the heavier lanthanides. Jones and Choppin(104) studied the formation constants and thermodynamic parameters in β -hydroxypropionate lanthanides complexes and indicated that the hydroxyl group is not involved in a chelate ring.

III. MATHEMATICAL METHOD

A. Acid Dissociation Constants

1. General considerations

In aqueous solution a carboxylic acid exists in equilibrium with the carboxylate anion and hydronium ion.

$$H_nA + H_2O = H_{n-1}A^{-} + H_3O^{+}$$

where $H_{n}A$ represents the undissociated carboxylic acid, $H_{2}O$ the water molecule, $H_{n-1}A^{-}$ the carboxylate anion, and $H_{3}O^{+}$ the hydronium ion. Since the acids used in this research are dihydroxymonocarboxylic acids and the hydroxyl group is a weaker acid than water (the pK_{a} value is 16 for methyl alcohol (105) and 19 for tertiary butyl alcohol (106)), the dissociation of hydrogen ion of the hydroxyl group can be neglected in comparison to the dissociation of the hydrogen ion of the carboxyl group. Only one hydrogen ion in homologous series is dissociated, therefore n in above equilibrium reaction is equal to one. The charges on the hydronium ion and the carboxylate ion will be presumed understood, hereafter, and the hydronium ion will be represented simply as H.

The thermodynamic dissociation constant K_{a} is defined by the equations,

$$K_{a} = \frac{[H]A] \gamma_{H} \gamma_{A}}{[HA] \gamma_{HA}}$$

$$K_a = K_c \cdot \frac{\gamma_A \gamma_A}{\gamma_{HA}}$$

where K_c is the stoichiometric dissociation constant, the brackets denote molar concentrations, and γ_i represents the activity coefficient of the ith species. For a given system, the thermodynamic dissociation constant is a function only of temperature and is directly related to the free energy of acid dissociation by means of the equation

$$\Delta G^{O} = -RTlnK_{a}$$
 (1)

At all finite concentrations, the stoichiometric dissociation constant will be related to the thermodynamic dissociation constant as:

$$K_{c} = K_{a} \frac{\gamma_{HA}}{\gamma_{H} \gamma_{A}} = K_{a} F(\gamma) = K_{a} F(I)$$
(2)

At the solute standard state, the activity coefficients approach one as the concentrations of all the species approach zero. Thus, in the limiting case of the infinitely dilute solution, the stoichiometric dissociation constant will equal the thermodynamic dissociation constant.

Activities or activity coefficients can not be measured in the multicomponent systems, such as the ones studied in this research. Consequently, the thermodynamic dissociation constants cannot be obtained experimentally, but one can obtain the stoichiometric dissociation constant directly, because the molar concentrations of all the species can be measured. At this point, three theories which were defined by Lewis and Randall (107), Debye and Hückel (108), and Harned (109) and Harned and Owen (110) should be introduced. Lewis and Randall pointed out that the activity coefficient of a given ion is the same in all solutions of identical ionic strength. The ionic strength, I, is defined by

$$I = \frac{1}{2}\Sigma Z_{i}^{2}C_{i}$$
(3)

where Z_i and C_i represent the charge and molar concentration of the ith ions respectively. The summation is carried out over all the ions present in solution. Later Debye and Hückel pointed out that the relationship between activity coefficients and ionic strength is

$$\log \gamma_{i} = - \left\{ \frac{AZ_{i}^{2}I^{\frac{1}{2}}}{1-BaI^{\frac{1}{2}}} \right\}$$
(4)

where the constants A and B depend on the temperature and the properties of the solvent, and a is the ion-size parameter of each individual ion. In practice, the ion-size parameter is usually treated as a semiempirical constant, because its exact value is difficult to determine. This theory is valid only for relatively dilute solutions. So, according to the Debye-Hückel theory, the activities of ionic species in a solution are primarily a function of the ionic strength of the solution. The last theory is Harned's theory of ionic interactions. Harned's equation is in the following form:

$$\Delta \log \gamma_{A} = \frac{c\Delta[A]}{I}$$
(5)

where $\Delta \log \gamma_A$ is the difference in $\log \gamma_A$ for two solutions of the same ionic strength which differs in free ligand concentration by Δ [A]. The constant C depends upon the ionic strength and the specific electrolytes under study. It will be shown later that for the systems studied in this research, the only major concentration differences in a given series of solutions are in the values of [A], the free ligand concentration, and in $[NO_3]$ the concentration of background electrolyte anion. It can be seen from this equation that $\Delta \log \gamma_A$ may be rendered almost negligible if the ionic strength is several orders of magnitude greater than the values of free ligand concentration. This fact suggests using as large a value of ionic strength as is consistent with the validity of equation 4. Harned's equation can provide a quantitative relationship between these concentration changes and the activity coefficient changes which result therefrom.

Stoichiometric dissociation constants in this dissertation are determined from a wide range of equilibrium constant data. These data have all been obtained from dilute solutions of identical ionic strength in which equation 4 is presumed valid, so all the relevant activity coefficients should have remained constant. The term F(I), in equation 2 should be constant; consequently, the value of the stoichiometric dissociation constant should be a constant for all solution of the same ionic strength, and this type of dissociation constant is called a conditional dissociation constant. Once conditional dissociation constants have been measured, one

can estimate the values of the thermodynamic dissociation constants in a number of ways. The most famous way is by obtaining conditional dissociation constants at several ionic strengths and extrapolating the results to zero ionic strength. At zero ionic strength, F(I) will equal one, and K₂ will equal K₂.

Powell, et al. (81, 82, 111, 112) and Devine (93) have applied the Debye-Hückel theory in determination of the acid dissociation constants in the last ten years, and they found that the value of K_c decreased slightly as the concentration of ligand increased. This idea was also examined by Ellilä (113) who found that the acid dissociation constant of acetic acid depended upon the nature and concentration of the background electrolyte even in solutions of identical ionic strength. Kilpatrick (114) also found that the acid dissociation constant of benzoic acid depended on the nature and concentration of the supporting electrolyte in solutions of identical ionic strength. So, application of the Debye-Hückel theory to acid dissociation constants is in question.

Powell has applied Harned's theory of ionic interactions to the acid dissociation constants of carboxylic acids system, and found a variation in K_c with [A]. According to Harned's theory of ionic interactions, if the composition of the ionic medium changes substantially, the value of K_c will vary slightly with concentration even when the ionic strength remains constant. For many purposes a slight variation in K_c with changes in [A] could be ignored. However, Powell showed that this variation should be taken into account in the calculation of rare-earth and transition metal complexes stability constants. The use of a variable K_c resulted in lower standard deviations and improved consistency of the

results. Consequently, a variable $K_{\ \rm c}$ was used to calculate the stability constants reported in this dissertation.

2. The methods of calculation

The preparation of the sample solutions used in the determination of the conditional ionization constants will be described in the next chapter. The pH_c readings and stoichiometric data on these solutions were used to calculate K_c , the conditional ionization constant, for each sample solution.

The following definitions must now be introduced:

 $V_{\tau\tau}$ = total volume of each sample;

 V_{B_i} = volume of buffer solution added to the ith sample; V_{S_i} = volume of KNO₃ supporting electrolyte added to the ith sample; C_{HA} = concentration of unneutralized acid in the buffer solution; C_A = concentration of carboxylate anion in buffer solution; C_S = concentration of KNO₃ supporting electrolytes; pH_{C_i} = pH_C of the ith sample solution. From a monobasic acid,

$$HA + H_2 O = A^- + H_3 O^+$$

the values of K were then calculated by the equation \mathbf{r}_{i}

$$K_{c_{i}} = \frac{\begin{bmatrix} H \\ l_{i} \end{bmatrix} \begin{bmatrix} A \\ l_{i} \end{bmatrix}}{\begin{bmatrix} HA \end{bmatrix}_{i}}$$
(6)

The concentration of undissociated acid in each sample, $[HA]_i$ and the concentration of free carboxylate ion in each sample, $[A]_i$, were calculated by means of the equations

$$[HA]_{i} = \frac{V_{B_{i}}C_{HA}}{V_{T}} - [H]_{i},$$
$$[A]_{i} = \frac{V_{B_{i}}C_{A}}{V_{T}} + [H]_{i},$$

and $[H]_i$, the hydrogen ion concentration of each sample, was calculated from the pH_{C_i} of the sample by means of the equation

$$[H]_{i} = 10$$
.

The correct amount of KNO₃ supporting electrolyte for the desired ionic strength in each sample, v_{S_i} , was calculated from the equation

$$V_{S_{i}} = \frac{(I - [A]_{i})V_{T}}{C_{S}}$$

The calculated values of V_{S_i} were then compared with the original estimates. If the difference of these two values is greater than one percent for a given set of concentration data, that set can be dropped from consideration, or the experiment may be repeated using the calculated values of V_{S_i} .

The slight variation in K_c with changes in the [A]value obtained from an ordinary least squares calculation was used to calculate the formation constants in this dissertation. The experimental K_c from equation (6) was compared with the least squares K_c . If the percentage difference between these two values exceeded one percent for a given set of concentration data, that set was dropped from consideration, and a new, more precise, least squares calculation was made with the remaining data.

An ordinary least squares calculation of the conditional ionization constant K_c can be rationalized by means of Harned's theory of ionic interactions. From equation 2 it can be seen that the variation of K_c must be due to variations of the activity coefficient F(I), because the thermodynamic ionization constant K_a is a function only of temperature as in equation 1.

If the undissociated acid is a non-ionic species, then γ_{HA} should be independent of changes in the ionic composition of the solution and should remain constant at any constant ionic condition.

Harned's theory predicts that $\gamma_{\rm H}$ will change as the supporting electrolyte cation is replaced by hydrogen ions. However, in all the solutions studied, the concentration of potassium ion remained constant at 9.80 x 10⁻² molar at a constant ionic strength of 0.100 molar. The variation in hydrogen ion concentration was very small over the series of solutions studied as from 2.262 x 10⁻⁴ to 2.882 x 10⁻⁴ molar in the case of 2,3-dihydroxy-2-methylisobutyric acid, so the variation of K_c caused by $\gamma_{\rm H}$ can be ruled out in this case.

In the case of γ_A , the data from 2,3-dihydroxy-2-methylisobutyric acid showed that, [A] varied from 1.714 x 10⁻³ to 2.260 x 10⁻² molar,

while $[NO_3^{-}]$ varied from 9.829 x 10^{-2} to 7.740 x 10^{-2} molar. According to Harned's theory, γ_A will vary as the supporting electrolyte NO_3^{-} anion is replaced by carboxylate anion and these concentration changes are significant. So, it is reasonable to conclude that the variation of K_c in equation 2 due to variation of γ_A and Harned's equation, as shown in equation 5, must be applied to obtain a quantitative relation between K_c and [A].

The term $K_a \gamma_{HA} / \gamma_H$ in equation 2 was assumed to be constant in this system; if this constant is designated K_{a_r} , the equation may be rewritten

$$K_{c} = \frac{K_{a_{l}}}{\gamma}$$

or
$$\log K_c = \log K_a - \log \gamma_A$$
.

If the values of K_c at two different ligand concentrations [A]₁ and [A]₂, are compared,

$$\log \mathbf{K}_{c_2} - \log \mathbf{K}_{c_1} = - \left[\log \mathbf{\gamma}_{A_1} - \log \mathbf{\gamma}_{A_2}\right]$$

Harned's equation can be introduced into the above equation, if $[A]_1$ equal zero and $[A]_2$ equal any finite ligand concentration,

$$\log K_{c_{i}} - \log K_{c_{i}} = -\frac{C[A]_{i}}{I}$$

 ${\rm K}_{\underset{{\rm O}}{\rm c}}$ at zero ligand concentration and constant ionic strength will be

defined as K . The above equation can then be rewritten a_2^{2}

$$\log K_{c_{i}} = \log K_{a_{2}} - \frac{C [A]_{i}}{I}$$
$$- C[A]_{i}/I$$
$$K_{c_{i}} = K_{a_{2}}^{10}$$

or

From the exponential equation

$$a^{X} = e^{x \ln a} = 1 + x \ln a + \frac{(x \ln a)^{2}}{2!} + \frac{(x \ln a)^{3}}{3!} + \dots$$

The $10^{-C[A]}$ can be expanded to give:

$$10^{-C[A]_{i}/I} = 1 - 2.3 \frac{C[A]_{i}}{I} + 2.65 \frac{C^{2}[A]^{2}_{i}}{I^{2}} - 2.03 \frac{C^{3}[A]^{3}_{i}}{I^{3}} + \dots$$

The above equation can then be written

$$K_{c_{i}} = K_{a_{2}} - 2.3 \frac{C[A]_{i}}{I}K_{a_{2}} + 2.65 \frac{C^{2}[A]_{i}}{I^{2}}K_{a_{2}} - 2.03 \frac{C^{3}[A]_{i}}{I^{3}}K_{a_{2}} + \dots$$

or
$$K_{c_{i}} = a - b[A]_{i} + c[A]_{i}^{2} - d[A]_{i}^{3} + \dots \qquad (7)$$

where
$$a = K_{a_2}$$

 $b = 2.3CK_{a_2}/I$
 $c = 2.65C^2K_{a_2}/I^2$
 $d = 2.03C^3K_{a_2}/I^3$

One can see that equation 7 is rationalized from Harned's theory of ionic interactions. If γ_{HA} and γ_{H} are assumed to be constant and the higher powers of anion concentration are assumed to be small compared to the first two terms. In practice equation 7 is used to find the best fit between the experimental conditional ionization constant from equation 6 and the variable conditional ionization constant from this equation. Sometimes this theory has been ignored in order to obtain the best fit of K_e in using the least-square method of calculation.

Powell, et al. (81, 82, 111, 112) and Devine (93) assumed that $[A]_i$ is always much larger than $[A]_i^2$, then the equation was rewritten to get a good fit by least square method,

$$K_{c_{ij}} = a - b[A]_{ij}$$
(8)

Farrell, a former chemist in professor Powell's research group minimized the coefficient b in equation 8 by plotting $K_{c_{i}}$ versus $[A]^{\frac{1}{2}}_{i}$, and his equation was written as

$$K_{c_{i}} = a - b[A]_{i}^{\frac{1}{2}}$$
 (9)

It would be surprising if anyone paid any attention to the third term in equation 7, but it was nevertheless of interest to see how the more rigorous K_c experimental fit compared to the less exact version, using a least square calculation. In this dissertation, this idea was tried for

$$K_{c_{i}} = a - b[A]_{i} + c[A]_{i}^{2}$$
(10)

The methods of least square calculation (115) were applied to equations 8, 9, and 10 in order to determine the coefficient a, b, and c. A computer program used for this purpose had been written by James Farrell, and later Don Johnson modified the program for the case of equation 10. These three simple least squares treatments have been compared in this dissertation for 2,3-dihydroxy-2-methylisobutyric acid. For equation 8

$$K_c = 0.30593 \times 10^{-3} - 0.52157 \times 10^{-3} [A]$$
 (11)

with equation 9

$$K_c = 0.3104 \times 10^{-3} - 0.10135 \times 10^{-3} [A]^{\frac{1}{2}}$$
 (12)

and with equation 10

$$K_c = 0.29791 \times 10^{-3} + 0.17424 \times 10^{-3}[A] - 0.15620 \times 10^{-1}[A]^2$$
 (13)

The sample output tables of equations 11, 12, and 13 are shown in Appendix A.

B. Formation Constants

1. General considerations

If the two species $M(H_2O)_n^{+q}$ and $A(aq)^{-p}$ coexist in aqueous solution, they may react to form one or more complexes in accord with the general

equilibrium equation

$$xM(H_2O)_n^{+q} + yA(aq)^{-p} = M_x(H_2O)_{nx-y}^{+qx-py} + yH_2O$$
 (14)

where M^{+Q} and A^{-P} stand for the metal cation and ligand anion, respectively. Since the metal cations used in this research are the trivalent lanthanide ions and the divalent transition metal ions, and oxidationreduction reactions are not being considered due to the existing conditions, the charges on the metal cations will be presumed always to be three for lanthanide ions and two for transition metal ions. The charge on the ligand anion will be always be presumed to be one, because the hydroxyl hydrogen atoms of the dihydroxymonocarboxylic acids used in this research do not dissociate (at least not in the pH range utilized). Hydrolysis is assumed not to occur with either the metal cations or the ligand anions since all equilibrated solutions in this work were in the pH range 3-4; and at such low pH values, hydrolysis of tripositive lanthanons and divalent transition metal cations is negligible (116, 117). For the reasons mentioned above, the charges on metal cations, ligand anions and complex ions will be omitted here and elsewhere.

The metal cations, ligand anions and complexes will all usually be solvated appreciably, but the number of associated solvent molecules in solution cannot be determined; hence the associated water molecules will also be omitted from the formulas of these species.

Although many examples of the existence of polynuclear complexes for which x > 1 and $y \ge 0$ have been reported, it has been found that only mononuclear complexes, for which x = 1 and $y \ge 1$, are formed in a large

number of analogous systems, especially in dilute solution. In the particular conditions of this research and others, only mononuclear complexes appear to form, and polynuclear complexes will not be considered further. In a system which contains only mononuclear species, M may be considered the central group of the complex MA_n , and A is usually referred to as the ligand. The maximum number of ligands that can combine with one central group is commonly denoted by N.

Now, equation 14 can be represented specifically as various equilibria between a metal ion M and a ligand anion A:

M + A = MA $MA + A = MA_2$ $MA_2 + A = MA_3$ $MA_{n-1} + A = MA_n$

The equations above give rise to a set of equilibrium expressions

$$K_{1} = \frac{[MA]}{[M][A]}$$

$$K_{2} = \frac{[MA_{2}]}{[MA][A]}$$

$$K_{3} = \frac{[MA_{3}]}{[MA_{2}][A]}$$

$$K_{n} = \frac{[MA_{n}]}{[MA_{n-1}][A]}$$
(15)

Another way of expressing the set of equilibrium relationships is as follows:

$$M + A = MA$$
$$M + 2A = MA_2$$
$$M + 3A = MA_3$$
$$M + nA = MA_n$$

for which

$$\beta_{1} = \frac{[MA]}{[M][A]}$$

$$\beta_{2} = \frac{[MA_{2}]}{[M][A]^{2}}$$

$$\beta_{3} = \frac{[MA_{3}]}{[M][A]^{3}}$$

$$\beta_{n} = \frac{[MA_{n}]}{[M][A]^{n}}$$
(16)

Since there can be only N independent equilibria is such a system, it is clear that the $K_{\underline{i}}$'s and the $\beta_{\underline{i}}$'s are related. It is not difficult for one to see that the relationship is:

1

1

$$\boldsymbol{\beta}_{\mathrm{N}} = \boldsymbol{K}_{\mathrm{1}}\boldsymbol{K}_{2}\boldsymbol{K}_{3} \cdot \boldsymbol{K}_{\mathrm{N}} = \frac{\boldsymbol{\pi}}{\mathrm{i} + 1} \boldsymbol{K}_{\mathrm{i}}$$

The K_i 's are called the stepwise formation constants (or stepwise stability

constants and stepwise equilibrium constants), and β_{i} 's are called the over-all formation constants (or over-all stability constants and over-all equilibrium constants).

The stoichiometric formation constant, β_n in equation 16 can be rewritten to get the thermodynamic formation constant, * β_n

$$*\beta_{n} = \beta_{n} \frac{\gamma_{MA}}{\gamma_{M} \gamma_{A}^{n}}$$
(17)

or
$$\beta_n = *\beta_n \frac{\gamma_M \gamma_A^{II}}{\gamma_{MA_n}} = *\beta_n F(\gamma) = *\beta_n F(1)$$
 (18)

For a given system, the thermodynamic stability constant is a function only of temperature; it is directly related to equation 1 (which replaces K_a in equation 1 by $*\beta_i$). Equations 17 and 18 are referred to systems involving finite concentrations. At the solute standard state, the activity coefficients approach one as the concentrations of all the species approach zero. Thus, in the limiting case of the infinitely dilute solution, the stoichiometric formation constant will equal the thermodynamic formation constant.

Essentially the same general considerations by Lewis and Randall (107), Debye and Hückel (108), Harned (109), and Harned and Owen (110) theory are applied to the complex-ion formation constants. The thermodynamic formation constants cannot be obtained directly, although stoichiometric formation constants can easily be measured. According to Debye and Hückel's theory, the value of β_n will be constant for all dilute solutions of the same ionic strength. According to Harned's theory of ionic interactions, if the composition of the ionic medium changes, the values of $\boldsymbol{\beta}_{n}$ will vary slightly with concentration even when the ionic strength remains constant.

Stoichiometric formation constants are determined from a wide range of equilibrium constant data obtained from dilute solutions of identical ionic strength in which equation 4 is presumed valid, as all the relevant activity coefficients should have remained very nearly constant. $F(\gamma)$ or F(I) in equation 18 should be constant; consequently, the value of the stoichiometric formation constant should be a constant for all solution of the same ionic strength, and this type of formation constant is called a conditional formation constant (or conditional stability constant and conditional formation constant). Once conditional formation constants have been measured, one can estimate the values of the thermodynamic formation constants by obtaining conditional formation constants at several ionic strengths and extrapolating the results to zero ionic strength. At zero ionic strength, $F(\gamma)$ or F(I) will equal one, and β will equal * β .

Powell used an application of the Harned's theory to calculate the acid dissociation constants. He used this slight variation in K_c with changes in [A] to obtain the formation constant in order to correct the β_i values. He showed that when this variation K_c with changes in [A] was taken into account, it resulted in lower standard deviations and improved consistency of the results. Consequently, a variable K_c was used to calculate the formation constants reported in this dissertation.

Approximately the same range of ligand concentration was used in the study of the rare-earth and transition metal complex stability constants as was used in the study of the acid dissociation constants. Since the
activity coefficient of one of the species was not held strictly constant during the measurement of the acid dissociation constant, one must assume that the same behavior will be found during the measurement of the formation constants. As in Harned's theory, the formation constant values should vary slightly over the range of ligand concentrations employed. Unfortunately, because of the computational difficulties involved, the functional dependence of β_i on [A] cannot be determined as one does in the case of acid dissociation constants. But by using a variable K_c , the variation in β_i with increasing [A] should be kept relatively small, and the formation constant values presented in this dissertation can be considered to be the average values over the ligand concentration range employed.

2. The methods of calculation

Prior to discussing formation constant calculation methods, some necessary definitions should be introduced. In the next section, the experimental aspects of the formation constant determinations will be described. C_A and C_M are the total concentrations of the ligand and metal ions, respectively, and are known from the analytical compositions of the initial solutions. These terms are defined by

$$C_{A} = [A] + [MA] + 2[MA_{2}] + 3[MA_{3}] + \dots n[MA_{n}]$$

and $C_{M} = [M] + [MA] + [MA_{2}] + [MA_{3}] + \dots [MA_{n}]$

Where [A] and [M] are free ligand and free metal concentrations respec-

tively. The solution of these equations generally involves the use of the average number of ligands bound per metal ion \bar{n} , which is defined as:

$$\bar{n} = \frac{C_A - [A]}{C_M}$$
(19)

n was first introduced by Niels Bjerrum (118, 119) in 1915 and has been defined as "the degree of formation of the system" or "the ligand number" by Jannik Bjerrum (14). The ligand number is also given as:

$$\bar{n} = \frac{[MA] + 2[MA_2] + 3[MA_3] + \cdots n[MA_n]}{[M] + [MA_2] + [MA_3] + \cdots [MA_n]}$$

$$K_1 = \frac{[MA]}{[M][A]}$$

$$K_2 = \frac{[MA_2]}{[MA][A]}$$

$$K_3 = \frac{[MA_3]}{[MA_2][A]}$$

$$K_n = \frac{[MA_n]}{[MA_{n-1}][A]}$$

it is seen that $\begin{bmatrix} MA \end{bmatrix} = K_1 \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} A \end{bmatrix} = \beta_1 \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} A \end{bmatrix}$ $\begin{bmatrix} MA_2 \end{bmatrix} = K_1 K_2 \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} A \end{bmatrix}^2 = \beta_2 \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} A \end{bmatrix}^2$ $\begin{bmatrix} MA_3 \end{bmatrix} = K_1 K_2 K_3 \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} A \end{bmatrix}^3 = \beta_3 \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} A \end{bmatrix}^3$

from

$$[MA_n] = K_1 \dots K_n[M][A]^n = \beta_n[M][A]^n$$

One can replace the terms [MA], $[AM_2]$, $[AM_3]$... $[AM_n]$ appropriately, and factor out [M] to get:

$$\bar{n} = \frac{K_{1} [A] + 2K_{1} K_{2} [A]^{2} + 3K_{1} K_{2} K_{3} [A]^{3} + \dots K_{1} \dots K_{N} [A]^{N}}{1 + K_{1} [A] + K_{1} K_{2} [A]^{2} + K_{1} K_{2} K_{3} [A]^{3} + \dots K_{1} \dots K_{N} [A]^{N}}$$

$$= \frac{\sum_{n=1}^{N} n \beta_{n} [A]^{n}}{\sum_{n=0}^{N} \beta_{n} [A]^{n}}$$
(20)

This interesting result shows that the ligand number \bar{n} depends only on the conditional formation constants and the concentration of the free ligand [A] in solution. If one knows N different values of \bar{n} at N values of [A], one can determine N constants (either $\beta_1, \beta_2, \beta_3, \ldots, \beta_N$ or $K_1, K_2, K_3, \ldots, K_N$). For the calculation of these constants graphical or numerical methods are widely used (14, 120, 121, 122) though the use of computers is replacing these methods to a large extent (123).

Equation 20 is the basic equation for the formation constant calculation. The methods to be considered consist of two types: (a) those methods useful only or primarily where one complex is present at a time; (b) those methods designed to take step-wise formation of the complexes into consideration without worrying about whether all of the possible complexes are actually present in the solution or not. The systems studied in this research are complex, so the focus of this section will be on the second type, but some idea of the first type should be introduced here. The slope-ratio method was described by Harvey and Manning (124) and Meyer and Ayres (125) for the case in which one complex predominates at a time. Beer's law can be used to determine the molar concentration of the complex species. Once the extinction coefficient of the complex has been established, the formation constant can be determined. Another spectrophotometric method used to determine the formation constant is the method of isomolar solutions. It was described by Job (126), Jones (127) and Watkins and Jones (128). The last method for the single complex that will be mentioned is the solubility method. This method is applicable only where solubility changes are due to formation of a single new complex. Vosburgh and Beckmann (129) studied the formation of cadmium oxalate in cadmium perchlorate solutions; and a somewhat more complicated instance where solubility studies were used to determine complexity constants (the Yb⁺³ - C₂O_h⁻ system) was studied by Crouthamel and Martin (130).

Equation 20 is the basis for calculating the formation constants in a system wherein more than one complex is present at a time. The methods that have been used to calculate the stability constants can be divided into three categories: successive approximation methods, graphical integration techniques, and least squares computations. Although a least squares method was used in this research, the basic concepts of the other two methods will be briefly discussed. The descriptions of these two methods given below are intended to illustrate the general nature of the methods rather than their most sophisticated mathematical formulation.

a) J. Bjerrum's Potentiometric Method (14). This publication presented a very complete survey of the problems involved in the determination of successive stability constants of metal ammines and related

complexes. By using a medium which contained a large amount of an ammonium salt, such as ammonium nitrate, ammonia and the metal ammines could be generated by the addition of a strong base. For any solution:

$$[NH_{3}] = \kappa_{NH_{1}^{+}[H^{+}]}$$

where $K_{NH_4^+}$ is the acid dissociation constant of the NH_4^+ ion. The ammonia concentration could thus be determined from the pH_c , while the total available ammonia, C_{NH_3} , and the ionic strength remained constant due to the experimental conditions. From these quantities, \bar{n} can be calculated by either the exact expression:

$$\bar{n} = \frac{C_{NH_3} + [H^+] - [NH_3]}{C_M}$$

or by the approximation $\bar{n} = \frac{C_{NH_3} - [NH_3]}{C_N}$

From the various equilibria in which $M(NH_3)_x$ species are formed one can then determine the successive stability constants using at least N expressions of the type:

$$\bar{n} = \frac{\kappa_1 \left[NH_3 \right] + 2\kappa_1 \kappa_2 \left[NH_3 \right]^2 + 3\kappa_1 \kappa_2 \kappa_3 \left[NH_3 \right]^3 + \dots \kappa_1 \dots \kappa_N \left[NH_3 \right]^N}{1 + \kappa_1 \left[NH_3 \right] + \kappa_1 \kappa_2 \left[NH_3 \right]^2 + \kappa_1 \kappa_2 \kappa_3 \left[NH_3 \right]^3 + \dots \kappa_1 \dots \kappa_N \left[NH_3 \right]^N}$$

Martell and Calvin (131) present a variety of approximate and graphical methods for obtaining solutions for such sets of equations. Specific solutions have not been published for all numbers of complexes but are

available for cases where up to three ligands are coordinated. Block and McIntyre (132) have given exact algebraic solutions for the formation constants for N = 1, 2, and 3 which are useful in the treatment of most complexation reactions involving polydentate ligands; Randall, Martin, and Moeller (133) used a digital computer to calculate successive formation constant for N = 3. The disadvantages of Bjerrum's methods are the limiting use of N and one cannot use data for which \bar{n} is greater than N, or data for which \bar{n} is very close to N. Consequently, K_1 is calculated from data for which \bar{n} is between the limits of 0.3 and 0.7, K_2 is calculated from data for which \bar{n} has the limits of 1.3 and 1.7, and K_3 is established between the \bar{n} values 2.3 and 2.7.

b) Ion-exchange Methods (134, 135). Cation exchange chromatography has been used to study complexes in solution for systems containing either a single complex or systems in which several complexes are present. The basic principle is the relationship which exists between the amount of metal absorbed on the ion exchange resin and the concentration of metal ion in solution. The amount of metal absorbed on the cation exchange resin ideally depends only on the concentration of free metal ion in solution. The amounts of resin, the ionic strength, the pH, and the temperature must all be held constant in such experiments.

Ion exchange techniques have been applied to the determination of successive stability constants by several people. Fronaeus (136, 137, 138) has illustrated his study of the cupric acetate system. The sodium form of the resin was used in a medium kept at unit ionic strength by the addition of sodium perchlorate. His equations are developed as follows: C_M and C_A are the total concentrations of metal ion M and ligand ion A

in the solution in equilibrium with the ion-exchanger. $[MR_2]$, [MAR], and [NaR] are the moles of M^{+2} , MA^+ , and Na^+ contained in a unit weight of the exchanger at equilibrium. Then

$$c_{MR} = [MR_2] + [MAR]$$
$$\phi = \frac{c_{MR}}{c_{M}}$$

In practice, \oint values are obtained at different C_A values but ideally C_{MR} should be kept constant. For a rough approximation one may use:

$$\bar{n} = -\frac{C_A \left(\frac{\partial \phi}{\partial C_A}\right)_{C_{MR}}$$

Where [A⁻] values may be calculated from equation 19

$$[A^{-}] = C_{A} - \bar{n} \cdot C_{M}$$

If the denominator of Equation 20 is denoted by x, then it is apparent that

$$x = 1 + \sum_{n=\perp}^{N} \beta_n [A^-]^n$$

To obtain the β_n , the product $\phi \cdot x$ is differentiated twice with respect to [A⁻] and using the equation for ϕ to get:

$$\phi^{ii} \cdot \mathbf{x} + 2\phi^{i} \cdot \mathbf{x}^{i} + \phi \cdot \mathbf{x}^{ii} = 0$$

Substitution of the expressions for x, x', and x" leads to:

$$\phi'' + \sum_{n=1}^{N} ([A^{-}]^{n} \cdot \phi'' + 2n [A^{-}]^{n-1} \cdot \phi' + n(n-1)[A^{-}]^{2} \cdot \phi) \beta_{n} = 0$$

A graph of ϕ vs. [A]allows ϕ' to be evaluated and a graph of ϕ' vs. [A] allows ϕ'' to be obtained. When ϕ , ϕ' , and ϕ'' terms are known at N discrete values of [A] the complexity constants β_N can be computed. Mahan and Dey (139) used this method for nickel(II)-Nitroso-R-Salt complexes.

c) A Graphical Method. Equation 20 has been modified by several people to get a suitable form such that, if 2 functions in the modified equation are plotted, some other function such as complexity constants β_i can be obtained from the graph. One useful method has been reported by Rossotti and Rossotti (140) who rearranged equation 20 to get:

$$\frac{\bar{n}}{a(\bar{n}-1)} + \beta_1 + \beta_2 \frac{(\bar{n}-2)}{(\bar{n}-1)} = \sum_{n=3}^{N} \frac{(n-\bar{n})}{(\bar{n}-1)} \beta_n a^{n-1}$$

Plotting $\bar{n}/a(\bar{n}-1)$ vs. $a(\bar{n}-2)/(\bar{n}-1)$ give β_1 as an intercept and β_2 as a limiting slope.

d) The Least Squares Method. The least squares method used in this dissertation is based on the method of Sullivan, Rydberg, and Miller (123). This method was first adapted by Stagg (141), Stagg and Powell (142). The method has been further modified by Powell and several of his co-workers.

Equations 19 and 20 can be rearranged to get

$$\sum_{n=0}^{N} (\tilde{n}-n) \beta_n [A]^n = \sum_{n=0}^{N} (C_A - [A] - nC_M) \beta_n [A]^n = 0$$

A program was developed for the I.B.M. 360 computer to calculate the best values for the $\boldsymbol{\beta}_n$ from the equation:

$$0 = \sum_{n=0}^{N} (y - x - nz) \beta_n x^n$$

The input data are $y = C_A$, x = [A] and $z = C_m$. The residual for a given set of data (x_i, y_i, z_i) will be given by the equation

$$U_{i} = \sum_{n=0}^{N} (y_{i} - x_{i} - nz_{i}) \beta_{n} x_{i}^{n}$$
(21)

A weighting factor was introduced in applying the method of least squares to equation 21, because of the small random errors in the dependent variables (x, y, z) that one cannot avoid. The weighting factor weights those data expected to exhibit smaller errors more heavily than data prone to larger errors. When the dependent variable is subject to random errors, the weighted least squares method requires that a set of β_n be determined which minimizes the residuals. Therefore in equation 21, while one ideally should have each $U_i = 0$, one can determine that set of β_n values which best relates I data sets (x_i , y_i , z_i) in the least squares sense by minimizing

$$S = \sum_{i=1}^{N} w_{i} U_{i}^{2}$$
(22)

Where w_i is the weighting factor for the ith data set and I is the total number of data sets (x_i, y_i, z_i) .

When S is minimized with respect to each of the parameters in the β_n , N equations of the form $dS/d\beta_n$ are obtained. These N equations are set equal to zero and solved by matrix algebra. Each of these N equations is of the form

$$Y(n) + W(n,1)\beta_1 + W(n,2)\beta_2 + \dots + W(n,N)\beta_N = 0$$

or in matrix form

$$\begin{pmatrix} W(1,1) & W(1,2) \dots & W(1,N) \\ W(2,1) & & \\ &$$

where

$$W(N,N) = \sum_{i=1}^{I} w_i (y_i - x_i - nz_i) (y_i - x_i - Nz_i) x_i^{2N}$$
$$Y(N) = \sum_{i=1}^{I} w_i (y_i - x_i) (y_i - x_i - nz_i) x_i^{N}$$

using a matrix notation WA = -Y

A can be solved by inverting W as

$$A = W^{-1}(-Y)$$
(23)

The computer program is set up to calculate the values of $\beta_0, \beta_1 \dots \beta_N$

from the data sets (x_i, y_i, z_i) using equation 23. The minimum value of S in equation 22 is then calculated using the best values of the β_0, β_1, \cdots $\cdot \beta_N$. The standard deviation of each of the parameters $\delta \beta_i$, may be computed from the diagonal elements of the inverse of the matrix as

$$\delta \beta_{i}^{2} = W_{ii}^{-1} \frac{S_{min}}{(I-N)}$$

where W_{ii}^{-1} is the i th diagonal element of the inverse of W, and (I-N) is the degrees of freedom for the Chi-squared distribution χ^2 of S_{min} , where I is the number of data points used and N is the number of parameters.

The weighting factor should be determined prior to the calculation of equation 23. The weighting factor is related to the errors in the measurements by the expression

$$w_{i} = \frac{1}{\delta U^{2}}$$
(24)

where $\mathcal{A}U$ is the standard error in the residual U which reflects the errors in the data x, y and z. Sullivan, Rydberg, and Miller (123) assumed that most of the variation in U is due to variation in x, then

$$x_{\gamma} \frac{x_{Q}}{--} = 0$$

where δx is the standard deviation in the quantity x. Devine (93) revised the computer program to include the variation in y and z in the weighting factor:

$$\delta U = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}$$
(25)

This complete weighting factor gave a better fit of the data, and showed smaller standard deviations in the calculated β_n values than when the shorter weighting factor was used. The complete weighting factor was also used in this research instead of the original shorter one.

Since one needs to know the β_n in order to calculate the weighting factor, an iterative procedure was employed. One must first estimate the values of the desired stability constants and feed them into the computer program to calculate the first set of weighting factors from equations 24 and 25. Then an improved set of β 's are calculated from equation 23, and this improved set of β 's is used to calculate a new set of weighting factors. The process is repeated until convergence is obtained to within acceptable limits. Generally three to ten such iterations sufficiently yields a consistent set of solutions in this research.

The best stability constants, calculated from the last iterative process, were used to obtain a number of quantities. The sample output tables of this program is shown in Appendices B, C, D, E, and F. The experimental \bar{n} was obtained from the experimental quantities x_i , y_i , and z_i , using equation 19, and equation 20 was used to obtain a calculated \bar{n} from stability constants and the x_i values. The percentage difference between the two values of \bar{n} was then calculated for each individual data set. The percentage differences in the two values of \bar{n} provide a means of checking the consistency of each data point with respect to the whole series of measurements.

The weighted least squares method had several advantages. It provided a number of statistical checks on the results of the computations, such as the calculation of the standard deviation of each parameter and the percentage difference or apparent errors between the two values of \bar{n} .

IV. EXPERIMENTAL DETAILS

A. Preparation of the Organic Ligands

1. α,β -dihydroxy- β -methylisobutyric acid (DHMIBA)

Melikoff (143), Melikoff and Petrenko-Kritschenko (144) had difficulty in synthesizing this acid, because the two asymmetric carbon atoms caused four optical isomers or two pairs of enantiomorphic modifications. One of the dl-mixtures melts at 110-111[°] and the other at $88^{°}$ (145). The high-melting diastereomer has been prepared successfully from tiglic acid (trans-2-methyl-2-butenoic acid) via treatment with HOCl followed by alcoholic KOH and subsequent hydrolysis (143) and from tiglic acid by hydroxylating via peracetic acid (trans-addition) (146) and from angelic acid (cis-2-methyl-2-butenoic acid) by hydroxylating with aqueous alkaline KMnO₄ (cis-addition) (145). The lower-melting diastereomer has been obtained from tiglic acid via the hydroxylating action of alkaline KMnO₄ at $0^{°}$ (145, 146). Because of the low yield and the high cost of angelic and tiglic acids as intermediates in the methods mentioned above, a new method (147) was developed in this laboratory using a procedure similar to that used in the case of α , β -dihydroxyisobutyric acid (148).

a. Experimental procedure Ninety-four grams (3.5 moles) of freshly prepared anhydrous liquid HCN (0°) was added in an efficient hood to 259 g (2.5 moles) of 85% 3-hydroxy-2-butanone (acetoin) at 0° contained in a 2-1, three-neck, round-bottom flask, fitted with an ice-water-cooled reflux condenser, a thermometer and a stirrer. After thoroughly mixing the reactants, the flask was raised just out of the ice-bath, and solid

KCN catalyst was added in 0.1-g portions to initiate and sustain the reaction. After adding a total of 0.8 g of KCN, the temperature was observed to rise, slowly at first and then rapidly. When the temperature reached 40° , the reaction was quenched and maintained between 30 and 32° , either by judiciously dipping the reaction flask momentarily into the ice-bath or by adding a bit more KCN. In all, 2.0 g of solid KCN catalyst was used. After the reaction subsided and the **te**mperature had dropped to 25° (2.5 h), the mixture was allowed to stand overnight at room temperature.

The mixture was then cooled to 2° and treated with 282 ml of chilled 12N HCl, (3.5 moles), whereupon the temperature rose rapidly. The temperature was again controlled by means of the ice-bath between 30 and 32° and (after about an hour) the solution was saturated with respect to HCl by bubbling in anhydrous HCl at such a rate that the temperature of the mixture did not exceed 30° while being stirred in the ice-bath. After 5 h of such treatment, the mixture was allowed to stand overnight at room temperature.

After 20 h, the light-brown reaction mixture was diluted to a volume of 4.5 l, then passed into and eluted (with distilled water) through an ion-exchange column system (comprised of six 6-in.-diameter X 48-in.long cylindrical beds of 40-50 mesh Dowex 50W-X8 (H^+ form) cation-exchange resin) as shown in Figure 8, at a rate of 1.2 l/h. The effluent solution was collected in a series of fifty-five 1.2 l fractions and the pH of each solution was measured to monitor the separation achieved. The strong acid (HCl) was observed to pass through the system (at pH 0.9) in fractions 19-36, and 2,3-dihydroxy-2-methylbutanamide was detected (ac-

companied by some formic and 2,3-dihydroxy-2-methylbutanoic acids) in fractions 40-49 (which had a pH of about 2.4).

When the HCl-free amide-bearing fractions(40-49) were combined and evaporated to a small volume (at 98°) and allowed to cool, large crystals of 2,3-dihydroxy-2-methylbutanamide separated from the aqueous medium. The crystals were filtered off, washed with a small portion of cold acetone and dried. The recovered amide, weighing 288 g (86% yield), melted at 139-140° and was found to contain 45.25% C, 8.20% H and 10.50% N (theoretical analysis: 45.11% C; 8.27% H; 10.53% N; 36.09% O). On two prior occasions, when the temperature was controlled less carefully, the amide was obtained in yields of 53 and 71%.

Two moles (266 g) of the amide were dissolved in 2.5 l of water and treated with 100 g (2.5 moles) of NaOH pellets. The solution was simmered at 98° (while water was added occasionally) until evolution of NH₃ ceased; then it was cooled and passed into and eluted (with distilled water) through an ion-exchange column system (comprised of three 6-in.-diameter X 48-in.-long cylindrical beds of 40-50 mesh Doxex 50W-X8 (H⁺ form) cation-exchange resin) at a rate of about 1.2 l/h. The effluent solution was collected in a series of thirty 1.2-l fractions. Fractions 18 through 25 (pH 2.13) were found to contain the bulk of the 2,3-dihydroxy-2-methyl-butanoic acid. These were concentrated by vacuum evaporation (under 40°) to a thick syrup, which was dissolved in hot ethyl acetate and allowed to cool; whereupon, 2,3-dihydroxy-2-methylbutanoic acid separated in crystal-line form and was recovered by filtration. This crude acid product was recrystallized from a warm mixture of acetone and carbon tetrachloride, yielding 204 g (76% yield) of 2,3-dihydroxy-2-methylbutanoic acid melting

at $109-110^{\circ}$ and having an equivalent weight of 135.39 (calculated 134.14). The product was found to contain 44.54% C and 7.50% H (theoretical analysis: 44.71% C; 7.46% H; 47.83% 0).

2. α,β -dihydroxyisobutyric acid (DHIBA)

Because of the difficulty in the synthesis of this acid reported by Melikoff (143), Glattfeld and Sherman (149), Powell developed a new method of preparation using ion-exclusion and ion-exchage techniques. The α,β -dihydroxyisobutyric acid used in this research was synthesized using the method described by Powell, <u>et al.</u> (148); and full details are reiterated here in order to compare the method with that described above in the case of α,β -dihydroxy- β -methylisobutyric acid.

a. Experimental procedure 124 g (4.6 moles) of freshly prepared anhydrous liquid HCN (0°) was added in an efficient hood to 296 g (3.61 moles) of 90.6% acetol at 0° contained in a 2-1, 3-neck, round-bottom flask, fitted with an icewater-cooled reflux condenser, a thermometer and a stirrer. After thoroughly mixing the reactants, the flask was raised just out of the ice-bath and solid KCN catalyst was added in 0.2 g portions to initiate and sustain the reaction. After adding 0.4 g of catalyst, the temperature of the reaction mixture was observed to rise, slowly at first and then rapidly, until the mixture began to boil and HCN began to return from the condenser. The temperature was maintained between $45-50^{\circ}$ by judicious dipping of the reaction flask momentarily into the ice-bath or by adding catalyst, as needed. In all, 2 g of catalyst were added to the mixture to ensure establishment of equilibrium within a reasonable time.

After the reaction had subsided and the temperature returned to 25° (about 2 h), the flask assembly with reaction mixture was weighed (the assembly had been weighed alone previously) and about a gram of the mixture was weighed into a 100-ml volumetric flask containing 2 ml of concentrated nitric acid and about 50 ml of distilled water and finally diluted to volume. This procedure "froze" the reaction and permitted an analysis for the constituents HCN and acetol cyanohydrin present at equilibrium. HCN was estimated in one aliquot of the diluted reaction mixture by adding a known amount of silver nitrate, filtering off and rinsing the AgCN precipitate, and finally titrating the soluble silver in the filtrate plus rinse water with standard potassium thiocyanate solution. The acetol cyanohydrin content was determined by the difference between the CN titers in this aliquot and an identical portion which was first made strongly basic to convert the cyanohydrin to the original ketone and CN and then added with vigorous stirring to a known amount of excess silver nitrate solution containing sufficient nitric acid to neutralize all of the base. The reaction

$$\stackrel{OH}{\downarrow}$$

>C-CN + OH \rightarrow X=O + CN + H₂O

was found to occur instantaneously and quantitatively. By virtue of these analyses it was established that 3.41 moles out of 3.61 moles of acetol originally present were converted to acetol cyanohydrin, and that only 0.81 moles of HCN and 0.20 moles of acetol remained unreacted.

The reaction mixture was then cooled to 0°, treated with 400 ml of cold concentrated hydrochloric acid, and saturated with respect to HCl by

bubbling in anhydrous HCl at such a rate that the temperature of the mixture did not exceed 40° while being stirred in an ice bath. Within an hour a large amount of NH₄Cl had formed and the reaction was allowed to proceed at room temperature overnight with no further addition of HCl. After 16 h of hydrolysis, the mixture was sampled and analyzed again for cyanohydrin. The same technique was used to determine the concentration of cyanohydrin in the presence of chloride as was used to estimate cyanohydrin in the presence of excess cyanide. At this point only 0.06 moles of cyanohydrin remained. Analysis for nitrogen (Kjeldahl), after removing ammonium ion from an aliquot by cation exchange and correcting for cyanohydrin, revealed that the reaction mixture contained 2.86 moles of α,β -dihydroxyisobutyramide at this point.

The reaction mixture was then diluted to a volume of 8 1, passed into and eluted (with distilled water) through an ion-exchange column system (consisting of three 6-in. diameter x 48-in. long beds of H^+ -form, 40-50 mesh, Dowex 50W X8, cation-exchange resin) as shown in Figure 8, at a rate of about 1.8 1/h. The effluent solution was collected in a series of 80, 900-ml fractions. The individual samples were analyzed for total acidity, chloride (HC1), displaceable NH₃ (amide), and volatile weak acid (formic acid). The first strong acid (HC1) appeared in the 27th fraction, peaked at about the 45th fraction and then fell off sharply (see Fig. 9). Amide and weak acids were detected in samples 50 through 76. Samples 50 through 60 contained varying proportions of HC1, amide and α , β -dihydroxyisobutyric acid, but only a little formic acid. Most of the formic acid (from hydrolysis of HCN) eluted in fractions 61 through 75.

Elution curves for the several constituents of the mixture are some-

what irregular. The occurrence of shoulders was unexpected, but reproducible, and remains to be explained. Integration of the areas under these analytical curves revealed a total of 2.55 moles of α , β -dihydroxyisobutyramide, 0.84 moles of α , β -dihydroxyisobutyric acid and 0.76 moles of formic acid. Since 3.41 moles of acetol cyanohydrin and 0.81 moles of HCN were indicated before hydrolysis, material balances reveal that virtually all of the excess HCN ended up as formic acid and 3/4 and 1/4 of the acetol cyanohydrin intermediate yielded amide and acid respectively.

When the HCl-free amide-bearing solutions (61 through 73), containing 233 g of amide, were evaporated to near dryness and allowed to cool, large crystals of α , β -dihydroxyisobutyramide separated from the aqueous medium. These crystals were filtered off subsequently and rinsed with a small portion of cold acetone. The recovered amide, melting at 123-127° weighed 202 g. When recrystallized from water, the pure amide melted at 128.5-129.5°. It is clear, of course, that additional ion-exclusion operations performed on the HCl-containing samples, 50 through 61, as well as appropriate retreatment of the mother liquor from amide recovery, would have enhanced the yield of α , β -dihydroxyisobutyramide. Subsequently, 155 g of the recovered amide was dissolved in a liter of water and treated with 60 g of NaOH pellets. The solution was boiled (while water was added occasionally) until evolution of NH_{2} ceased; then it was cooled and passed through a 2-in., H⁺-form, 40-50 mesh, Dowex 50W X8, cation-exchange resin bed, 4 ft. long, to obtain a dilute solution of α,β -dihydroxyisobutyric acid which was subsequently concentrated to a thick syrup by vacuum evaporation below 30°. The syrup was dissolved in 3 parts of warm ethyl acetate and allowed to cool. Crystallization of α,β -dihydroxy-

Figure 9. Ion exclusion separation of mineral acid from reaction products

isobutyric acid was induced and the mixture was cooled in ice before filtering. Two crops of crystals totalling 115.4 g and melting at 104-104.5° were obtained. The melting point noted by Glattfeld and Sherman (149) was 104°.

3. α -hydroxyisobutyric acid (HIBA)

 α -hydroxyisobutyric acid from the Aldrich Chemical Co., Inc., was purified by recrystallizing it from hot carbon tetrachloride solution. The recrystallized acid was found to melt at 83.5° and have an equivalent weight of 104.70 (calculated 104.12).

B. Preparation of Reagents

1. Trivalent rare-earth nitrate solutions

Approximately 0.1 <u>M</u> rare-earth nitrate solutions were prepared by dilution of concentrated stock solutions of rare-earth nitrates. These concentrated stock solutions were prepared originally from rare-earth oxides of 99.9% purity supplied by Powell's rare-earth separation group at the Ames Laboratory of the U. 3. Atomic Energy Commission by Mr. James Farrell, using the method described by Adolphson (150). They were found to have a 3:1 anion to cation ratio, within experimental error. The diluted solutions were standardized by precipitation of aliquots with oxalic acid and ignition of the rare-earth oxalates to their corresponding oxides (all rare-earth oxides are Ln_2O_3 , except CeO₂, Pr_6O_{11} and Tb_4O_7) at 800° (83). As a check of these standardizations, complexometric EDTA titrations of the type described by Fritz and Schenk (151) were used.

2. Divalent transition metal nitrate solutions

Approximately 0.1 <u>M</u> transition metal nitrate solutions were prepared from crystalline transition metal nitrates, which were obtained from J. T. Baker Chemical Co., without further purification. These solutions were standardized by passing aliquots through a well-washed hydrogen-form cation exchanger (Dowex-50) and titrating the effluent and rinsings with standard base.

3. Potassium hydroxide solution

Approximately 0.1 <u>M</u> and 1.0 <u>M</u> potassium hydroxide solutions were prepared by diluting concentrated, carbonate-free, potassium hydroxide purchased from Anchemia Chemicals, Ltd. in boiled, deionized water. The resulting solutions were kept in large containers and Ascarite (NaOH), 8 to 20 mesh, and Drierite (CaSO₄), 8 mesh, were used to protect the solutions from carbonate contamination and dilution errors, respectively. The solutions were standardized by titration against primary standard grade potassium acid phthalate.

4. Potassium nitrate solution

About 1.5 <u>M</u> potassium nitrate solution was prepared from J. T. Baker reagent-grade potassium nitrate, dissolved in boiled, deionized water. The solution was standardized by passing aliquots through a well-washed, hydrogen-form, cation exchanger (Dowex-50) and titrating the effluent and rinsings with standard base.

5. Nitric acid solution

Approximately 0.05 M nitric acid solution was prepared from concentrated, reagent-grade acid. The solution was standardized by titration against standard base.

6. Buffer solutions

Approximately 0.1 <u>M</u> solutions of α , β -dihydroxyisobutyric acid, α , β dihydroxy- β -methylisobutyric acid and α -hydroxyisobutyric acid were prepared by dissolution of the recrystallized reagents and standardized; then they were partially neutralized with standard CO₂-free potassium hydroxide. The free acid concentration in each buffer was confirmed by subsequent titration of aliquots with standard base.

C. Experimental Apparatus

The apparatus for the potentiometric experiments is shown in Figure 10. Either a Beckman Research pH meter or a Corning Model 101 Digital Electrometer was used to measure hydrogen ion concentrations of the solutions. These pH meters were each equipped with a Beckman sleeve-type calomel reference electrode and a Beckman (or Corning) glass electrode. Most of the experiments were done using the Corning Model 101 Digital Electrometer, because this instrument has a number of modes of operation, including a direct pH readout which was used in this research. This instrument was better than the currently available electrodes in terms of accuracy, stability, and reproducibility. The Corning 101 Electrometer will read pH values to within + 0.001 pH units with comparable linearity and repeatability. High quality glass and reference electrodes deliver comparable performance only when in perfect operating condition, a state much more easily discussed than attained.

A pair of constant temperature water baths, equipped to circulate through a jacketed titration cell were used. The titration cell was prepared by the Ames Laboratory glass shop. The temperatures of the baths were maintained at $25.00^{\circ} \pm .05^{\circ}$ by Philadelphia Micro-set thermoregulators and Precision Scientific electronic relays. Beside reference and glass electrodes, the titration cell was also equipped with a solution ground, a tube for bubbling nitrogen through the solution, a filling funnel and a drain. Since a separate solution was prepared for each experimental point, this cell was not a titration cell in the true sense of the word, but was rather designed to make highly reproducible pH determinations of successive prepared solutions of known stoichiometry.

The solution ground was simply a platinum wire, immersed in the solution and connected electrically to the ground terminal of the potentiometer. The solution ground and the sleeve-type reference electrode were incorporated into the system in order to alleviate some rather persistent problems of instability and irreproducibility. It was also found that the stability of the glass electrode was improved substantially by storing it in strong acid solutions during periods of disuse.

D. Experimental Procedure

The difficulty of this experiment was the instability of the pH measurements. Reference electrode, glass electrode, battery and solution

OR BECKMAN RESEARCH PH METER

Figure 10. Apparatus for pH measurements

ground were thought to cause this difficulty. The solution ground (Fig. 10) and a Beckman sleeve-type calomel reference electrode were suggested by Mr. Harvey Burkholder in this research group, and it improved the measurements. The mercury batteries were checked every month.

The main problem resulted from surface adsorption effects at the tip of the glass electrode, because it was quite sensitive to changes in its ionic environment. After the electrodes were removed from the standard solution and placed in a sample solution containing rare-earth ions, a wait of twenty minutes was necessary before a steady pH reading could be obtained. Also, if the electrodes were washed with distilled water after each measurement, about ten or fifteen minutes was needed for the surface of the glass electrode to equilibrate with the new ionic environment. The following procedures were developed for standardizing the pH meter and measuring the samples in order to overcome this difficulty.

After internal calibration of the pH meters (Beckman Research or Corning Electrometer), the instruments were standardized against a known nitric acid solution (the pH of the standard was close to the pH range of the subsequent measurements) with its ionic strength adjusted to 0.10 M. A standard nitric acid solution was used instead of standard pH buffer in order to yield readings in terms of hydrogen ion concentration rather than activity. The electrodes were soaked in a portion of the standard for at least an hour before standardization was begun, and at least three samples of the buffer were read each time the instrument was standardized.

The sample readings were made in a similar fashion after the pH meter had been standardized. Each sample solution was divided into three

portions. The first portion was used to rinse the electrodes, which were then soaked in the second portion. The final reading was taken on the third portion. Three minutes were allotted to allow the surface of the electrodes to equilibrate with each new ionic sample before the pH was measured.

Since a concentration standard rather than an activity standard was employed, the pH meter read the hydrogen ion concentration directly.

1. Formation constant measurements

As shown in Appendices B, C, D, E, and F, different volumes of buffer (VB) were added to a series of 23 to 45(I), 100 or 200-ml (final solution volume), volumetric flasks together with 2.00 or 4.00 ml of standard metal nitrate solution, and a constant ionic strength of 0.100 was maintained in all cases by adding calculated volumes of standard potassium nitrate solution prior to diluting to volume. All solutions were equilibrated overnight in a 25.0° C water bath, and the pH_c (pH) of each was determined to 0.001 units by means of the Beckman Research pH meter or Corning Model 101 Digital Electrometer.

The computer program used to calculate the formation constants also calculated the volume of standard potassium nitrate solution (Vol. KNO_3) that should have been added to each sample solution to achieve the desired ionic strength. These calculated values were used to check the original estimates and, if the calculated values (Vol. KNO_3) were significantly different from the original estimates, the measurements were repeated on new sample solutions which contained the correct amounts of potassium nitrate.

2. Acid dissociation constant measurements

The same procedure used in formation constant measurements was used in acid dissociation constant determinations, except no metal nitrate solution was added. Vacid and Vbase, as shown in Appendix A are the volumes of buffer added to each sample. Again, if the calculated values of potassium nitrate solution from the computer (VKNO₃) were significantly different from the original estimates, the measurements were repeated on new sample solutions which contained the correct amounts of potassium nitrate.

V. EXPERIMENTAL RESULTS

All the acid dissociation constants and chelate formation constants studied in this dissertation are stoichiometric values obtained at an ionic strength of 0.1 M (with potassium nitrate as the supporting electrolyte) and a temperature of 25° C. All the results from computer printouts are shown in Appendices A, B, C, D, E, and F. Only the computed acid dissociation constants from Appendix A and the formation constants from Appendices B, C, D, E, and F, together with the calculated standard deviations of the formation constants will be reported in this section. Some graphs will also be plotted from these data.

A. Acid Dissociation Constants

One can see from Harned's theory of ionic interaction (109, 110) as discussed in the Mathematical Method section that the value of K_c should vary slightly with the anion concentration even at constant ionic strength. The variable acid dissociation constant and the range of anion concentration in each system from Appendix A are summarized in Table 11. The variation of K_c up to [L] = 0.02 <u>M</u>. were calculated to be about 3, 1.5 and 3% for HIBA, DHIBA, and DHMIBA, respectively. Although this variation is small, it was taken into account in the calculation of metal complex stability constants in order to improve consistency of the results.

The variation of K_c for HIBA, DHIBA, and DHMIBA versus the anion concentration is shown in Figure 11. One can obtain similar linear be-

Acid	Variable K	[L ⁻]x10 ² range		
		(moles/liter)		
	······································			
HIBA	(1.596 - 2.616[1])10 ⁻⁴	0.416 - 1.015		
DHIBA ^a	(2.654 - 1.407[L])10 ⁻⁴	0.035 - 1.247		
	$(2.650 - 0.600[L]^{\frac{1}{2}})10^{-4}$	0.035 - 2.468		
DHMIBA	(3.059 - 5.218[L])10 ⁻⁴	0.171 - 2.260		
	$(3.084 - 0.907[L]^{\frac{1}{2}})10^{-4}$	0.222 - 2.260		
	(2.979 + 1.742[L] - 156.20[L] ²)10 ⁻⁴	0.171 - 2.260		

Table 11. The variable acid dissociation constant K of α -hydroxyisobutyric (HIBA), α,β -dihydroxyisobutric (DHIBA) and α,β dihydroxy- β -methylisobutyric acids (DHMIBA) as a function of anion concentration [L⁻]

^aFarrell, James, Department of Chemistry, Iowa State University.

havior, if a plot of K_c versus the square root of the anion concentration is made. The acid dissociation constants of these three acids decrease slightly as the anion concentration increases, and as the anion concentration approaches zero, K_c values equal 1.596 x 10⁻¹⁴ (pK_c = 3.80), 2.654 x 10⁻¹⁴ (pK_c = 3.57), and 3.059 x 10⁻¹⁴ (pK_c = 3.52) for α -hydroxyisobutyric, α,β -dihydroxyisobutyric and α,β -dihydroxy- β -methylisobutyric acids, respectively.

L1. The variable K of α-hydroxyisobutyric (HIBA), α,β-dihydroxyisobutyric (DHIBA) and α,β-dihydroxy-β-methylisobutyric acids (DHMIBA) as a function of anion concentration

1. Rare-earth(III) α,β -dihydroxyisobutyrate complexes

The formation constants of the rare-earth(III) DHIBA complexes from Appendix B are summarized in Table 12. The first three stepwise formation constants (K_1 , K_2 , and K_3) have been determined. Some values of K_4 have also been reported where calculable.

The formation constants of the rare-earth DHIBA chelate species have been studied previously by Mr. James Farrell of this research group. The experimental method and computer program used by Farrell is similar to the one used in this work with one significant exception: all pH readings were taken by a Beckman Research pH meter. The data otherwise were obtained under the same conditions as those employed in this research $(25^{\circ} \text{ and } \mu = 0.1M)$. The preliminary results obtained by Farrell are listed in Table 13. Comparison of these values with the author's results in Table 12 shows good agreement.

Figure 11 shows a plot of the first and second formation constants (K_1, K_2) of the rare-earth(III) DHIBA complexes as a function of ionic radius. One can see from this plot that, both values of K_1 and K_2 from Tables 12 and 13 agree very well to each other, and as a matter of fact, the standard deviations for the K_1 and K_2 values in both Table 12 and 13 are very small.

The ratios of the successive formation constants (K_1/K_2) in Table 12 can be divided into three groups, La to Nd, Sm to Tb, and Dy to Lu (including Y). The average values of K_1/K_2 are 5.97, 4.66, and 4.62 for La to Nd, Sm to Tb, and Dy to Lu (including Y), respectively. The values

Ln(III)	к _l	к ₂	к _з	к _ц	к ₁ /к ₂	к ₂ /к ₃
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y	445.6+0.7 682.5+0.6 886.9+0.6 922.4+0.9 1115.0+0.1 1123.0+0.7 1067.0+0.1 1084.0+0.1 1165.0+0.7 1299.0+0.4 1479.0+0.6 1657.0+0.4 1848.0+0.4 1984.0+0.4 1134.0+0.8	73.9+1.4 112.4+0.5 154.4+0.7 152.4+0.3 217.6+0.5 253.8+0.2 234.6+0.7 241.8+0.6 251.2+0.5 279.1+0.5 322.5+0.3 363.4+0.4 384.0+0.2 401.7+0.3 276.1+0.5	15.6+11.9 $23.7+5.5$ $26.6+5.2$ $30.8+4.1$ $43.8+1.1$ $46.4+3.3$ $48.3+2.6$ $43.1+1.5$ $47.2+4.3$ $61.4+2.0$ $64.7+2.5$ $67.3+2.5$ $65.6+1.8$ $71.1+2.1$ $53.5+3.9$	5.4+25.1 61.4+0.1 16.8+6.0 19.4+8.4 16.2+6.8 19.4+5.7 49.3+1.2 20.8+4.1 21.4+5.7 36.6+1.9	6.03 6.07 5.74 6.05 5.12 4.55 4.66 4.66 4.556 4.66 4.56 4.94 4.94 4.11	4.75 4.75 5.81 4.95 4.97 5.53 4.97 5.53 5.62 5.32 5.32 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.4
		average fro average fro average fro	om La to Nd om Sm to Tb om Dy to Y		5.97 4.66 4.62	5.07 5.25 5.28

Table 12. Formation constants of rare-earth(III) α , β -dihydroxyisobutyrate complexes

Ln(III)	ĸı	K ₂	к ₃	К _Ц	к ₁ /к ₂	к ₂ /к ₃
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y	441.4+0.3 689.8+0.2 864.0+0.3 994.5+0.2 1157.0+0.3 1146.0+0.3 1046.0+0.3 108.0+0.4 1205.0+0.3 1263.0+0.2 1428.0+0.2 1624.0+0.2 1828.0+0.4 1925.0+0.6 1037.0+0.2	$\begin{array}{c} 80.7 \pm 0.8 \\ 112.8 \pm 0.5 \\ 154.1 \pm 0.4 \\ 169.6 \pm 0.5 \\ 220.7 \pm 0.4 \\ 232.5 \pm 0.4 \\ 234.5 \pm 0.3 \\ 238.4 \pm 1.1 \\ 266.0 \pm 0.3 \\ 273.4 \pm 0.3 \\ 309.3 \pm 0.4 \\ 353.6 \pm 0.2 \\ 377.2 \pm 0.5 \\ 394.4 \pm 0.4 \\ 223.4 \pm 0.3 \end{array}$	12.4+4.9 $26.6+1.7$ $28.6+2.1$ $31.7+3.0$ $40.5+2.5$ $33.9+3.0$ $47.4+1.7$ $52.6+1.7$ $61.3+1.7$ $71.5+1.4$ $65.9+2.6$ $77.8+2.6$ $46.5+1.5$	$10.8+8.2$ $2.9+\overline{3}3.1$ $7.3+15.8$ $11.0+9.6$ $13.1+8.3$ $11.2+6.0$ $5.9+12.5$ $13.7+6.6$ $23.0+2.2$ $10.0+12.0$ $5.7+26.0$ $10.1+5.9$	5.47 6.12 5.61 5.24 4.93 4.465 4.53 4.65 4.65 4.62 4.59 4.62 4.59 4.88 4.88 4.64	6.49 4.24 5.40 5.35 5.45 6.86 4.95 5.70 5.20 5.04 4.95 5.73 5.07 4.81
		average fro	om La to Nd		5.77	5.37
		average from Sm to Tb			4.82	5.45
		average fro	om Dy to Y		4.68	5.23

Table 13. Formation constants of rare-earth α , β -dihydroxyisobutyrate complexes (data from Mr. James Farrell) same conditions as in Table 12.

of K_2/K_3 are not significantly different as shown in the case of K_1/K_2 , and as a matter of fact, the standard deviations of K_3 values are large compared to the values of K_3 . If the values of K_2/K_3 are separated into three regions as in the case of K_1/K_2 , they are 5.07, 5.25, and 5.28 for La to Nd, Sm to Tb, and Dy to Lu (including Y), respectively. Also, K_1/K_2 and K_2/K_3 from Table 12 agree very well with Farrell's data in Table 13. His average K_1/K_2 values are 5.77, 4.82, and 4.68 for La to Nd, Sm to Tb,

Figure 12. First and second formation constants (K (upper), K (lower)) of rare-earth(III) α , β -dihydroxyisobutyrate complexes as a function of ionic radius

and Dy to Lu (including Y), respectively, and K_2/K_3 , are 5.37, 4.45, and 5.22 for the same order as in the case of K_1/K_2 .

The variations in K_1 and K_2 with decreasing ionic radius of the trivalent rare-earth ions as shown in Figure 12 are very similar to each other, that is, they increase from La to Sm and Eu, then decrease to Gd. Beyond To, they increase smoothly to the maximum at Lu, while Y values lie below the lines. The lesser variation in the case of K_2 compared to K_1 is not surprising if the smaller magnitude of the K_2 values are taken into account. It is likewise not surprising that, if one tried to plot the values of K_3 and K_4 , the trends would be difficult to sort out. The standard deviations for K_3 and K_4 are altogether too large to allow any reliable correlations to be made.

2. Rare-earth(III) $\alpha \beta$ -dihydroxy- β -methylisobutyrate complexes

The first three stepwise formation constants $(K_1, K_2, \text{ and } K_3)$ and some values of K_4 (where calculable) from Appendix C, are summarized in Table 14 for the case of the trivalent rare-earth DHMIBA chelate species. The values of K_1/K_2 and K_2/K_3 for these chelate species are also shown in Table 14.

Powell, <u>et al</u>. (102) studied the formation constants of some of the trivalent rare-earth DHMIBA complexes at a higher ionic strength. Their data are summarized in Table 15. No comments or discussion will be made regarding these data, because their data were not obtained under the conditions studied in this research. The potentiometric titration method, in which it is very difficult to obtain high accuracy was used in this early study of this system.

Ln(III)	к _l	К2	к ₃	к ₄	к ₁ /к ₂	к ₂ /к ₃
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y	372.5+0.5 650.8+0.1 903.0+0.3 1082.0+0.2 1393.0+0.6 1342.0+0.2 1204.0+0.6 1099.0+0.7 994.9+0.4 1065.0+0.6 1288.0+0.5 1401.0+0.2 1616.0+0.3 1769.0+0.2 817.3+0.3	59.8+2.3 99.5+0.3 141.6+0.4 166.4+0.2 210.0+0.5 299.6+0.1 226.7+0.9 223.6+0.3 228.6+0.3 221.7+0.6 241.1+0.3 291.5+0.1 355.0+0.1 381.9+0.1 174.6+0.4	9.7+27.0 13.8+0.3 21.3+3.6 23.5+1.8 28.8+5.9 39.8-9+6.4 36.9+6.4 36.9+6.4 36.9+6.4 36.9+6.4 36.9+6.4 38.5+3.5 52.8+0.5 51.8+0.5 51.8+0.7 27.1+2.4	3.3+8.70 1.5 <u>+</u> 2.3 <u>+</u> 71.0	6.23 6.54 6.38 6.64 4.48 5.31 4.92 4.35 4.81 5.34 4.55 4.63 4.68	$\begin{array}{c} 6.14\\ 7.23\\ 6.65\\ 7.08\\ 7.29\\ 7.52\\ 6.15\\ 6.14\\ 15.09\\ 10.30\\ 6.26\\ 5.53\\ 6.85\\ 6.33\\ 6.45\end{array}$
		average fro	om La to Sm om Eu to Dy		6.46 4.77	6.88 6.60 ^a

Table 14. Formation constants of rare-earth(III) α, β -dihydroxy- β -methylisobutyrate complexes

^aDoes not include K_2/K_3 of Dy ^bDoes not include K_2/K_3 of Ho

Ln(III)	ĸı	K ₂	ĸ ₃	к ₁ /к ₂	к ₂ /к ₃
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	263 471 614 830 1070 1060 780 700 710 650 720	46 81 96 120 175 175 200 213 231 217 207	13 13 12 14 10 8 11 13	5.72 5.82 6.40 6.91 6.12 6.06 3.90 3.29 3.07 3.00 3.48	6.22 9.22 14.60 12.50 20.00 26.60 19.74 15.93

Table 15. Formation constants of rare-earth(III) α , β -dihydroxy- β -methylisobutyrate complexes at 25° and μ = 0.5 M. NaClO₄ (data from Powell, <u>et al.</u> (102)

Figure 13, shows a plot of the first and second formation constants (K_1, K_2) of the rare-earth(III) DHMIBA complexes as a function of ionic radius of the trivalent rare-earth ions. The variations in K_1 and K_2 with decreasing ionic radius of the trivalent rare-earth ions at either ionic strength 0.1 or 0.5 in Figure 13 are similar to each other; that is, they increase from La to Sm and Eu, then decrease to Dy (Ho in the case of K_2). Beyond Dy, they increase to the maximum at Lu. Y falls below the lines. The lesser variation in the case of K_2 compared to K_1 is to be expected because of the smaller K_2 values. The ionic strength difference (0.1 compared to 0.5) of these two data sets (data in Table 14 and 15) accounts for their vertical displacement.

The ratio of the successive formation constants (K_1/K_2) given in Table 14 can be divided into three regions, as in the case of the rare-

Figure 13. First and second formation constants $(K_1(upper), K_2(lower))$ of rare-earth(III) α,β -dihydroxy- β -methylisobutyrate complexes as a function of ionic radius

earth(III) DHIBA complexes; but, the extent of each region is different. In this case, three regions are La to Sm, Eu to Dy, and Ho to Lu (including Y). The average values of K_1/K_2 are 6.46, 4.77 and 4.80 for La to Sm, Eu to Dy and Ho to Lu (including Y), respectively. The values of K_2/K_3 are not significantly different, but, if they are divided into the same three regions, the average values of K_2/K_3 are 6.88, 6.60, and 6.28 for La to Sm, Eu to Dy, and Ho to Lu (including Y), respectively.

3. Formation constants of divalent transition metal α,β -dihydroxyisobutyrate complexes

The formation constants of the first two chelate species of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) cations with the DHIBA ligand from Appendix D are summarized in Table 16. The K₁ values decrease in the order Cu(II) > Ni(II) > Zn(II) > Cd(II) > Co(II). The ratio of the successive formation constant (K_1/K_2) is 9.39 for Cu(II), and is the only ratio in Table 16 that was determined to a sufficient degree of accuracy to be of significance. The standard deviations of K₂ in the case of Co(II), Ni(II), Zn(II) and Cd(II) compared to K₂ were simply too large.

M(III)	ĸl	K ₂	к ₁ /к ₂
Co	$41.5 \pm 0.2 \\ 66.1 \pm 0.2 \\ 429.0 \pm 0.2 \\ 58.3 \pm 1.0 \\ 42.5 \pm 0.3$	5.8 ± 11.7	7.11
Ni		8.9 ± 8.2	7.40
Cu		45.8 ± 0.7	9.39
Zn		5.6 ± 20.0	10.40
Cd		22.6 ± 4.1	1.88

Table 16. Formation constants of divalent transition metal α,β -dihydroxyisobutylate complexes

4. Formation constants of divalent transition metal α,β -dihydroxy- β methylisobutyrate complexes

The first and second formation constants of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with DHMIBA from Appendix E are summarized in Table 17. Their K₁ values also decrease in the order Cu(II) > Ni(II) > Zn(II) > Cd(II) > Co(II). Because of the large values of the standard deviations of K₂ in the case of Co(II), Ni(II), Zn(II), and Cd(II) compared to K₂ as shown in Table 17, the only K_1/K_2 ratio determined to any degree of accuracy is that for Cu(II).

Table 17. Formation constants of divalent transition metal α, β -dihydroxy- β -methylisobutyrate complexes

M(II)	ĸl	к ₂	к ₁ /к ₂
Co	38.8 ± 0.7 64.0 ± 0.2 414.0 ± 0.2 56.9 ± 0.6 41.5 ± 0.1	17.2 ± 6.7	2.26
Ni		17.3 ± 1.8	3.70
Cu		47.4 ± 1.1	8.77
Zn		22.0 ± 4.8	2.58
Cd		27.9 ± 10.5	1.49

Figure 14 shows a plot of the first formation constants of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with DHIBA and DHMIBA. Parallel trends are observed for these two ligands.

5. Formation constant of divalent copper α -hydroxyisobutyrate complex

Only the Cu(II) HIBA complex formation constant was studied in this system. The stabilities of the 1:1 and 2:1 HIBA complex species of

Figure 14. First formation constants of divalent transition metal with α,β -dihydroxyisobutyrate and α,β -dihydroxy- β -methylisobutyrate

divalent copper from Appendix F were reported in Table 18. The ratio of the successive formation constant (K_1/K_2) is 10.51 for this chelate species.

Table 18. Formation constant of copper(II) α -hydroxyisobutyrate complex

M(II)	ĸl	К2	к ₁ /к ₂
Cu	660.0 <u>+</u> 0.2	62.8 <u>+</u> 1.0	10.51

The formation constants of divalent transition metal HIBA chelate species have been reported by Thun, <u>et al.</u> (5) at 25° and #1.0 <u>M</u> were summarized in Table 5. The potentiometric titration method was used to obtain those data under different conditions than studied in this research; so, no reliable comparison can be made. The first formation constants in Table 5, however, decrease in the order Cu(II) > Zn(II) > Ni(II) > Co(II) > Cd(II).

VI. DISCUSSION AND CONCLUSIONS

A. Transition Metal Dihydroxycarboxylate Complexes

The linear relationship between the basicity of the ligand (pK_{c}) (or the acidity of the ligand $(logK_{c})$) and the chelate stability (logK)has been found to hold in a large portion of the literature reported so far. Thus, the weaker the acidity of the ligand acid, the more stable is the metal chelate compound. The stabilities of the divalent transition metal α,β -dihydroxyisobutyrate (DHIBA) complexes (Table 16) are higher than for the corresponding divalent transition metal α,β -dihydroxy- β methylisobutyrate (DHMIBA) complexes (Table 17). Only the copper(II) lpha-hydroxyisobutyrate (HIBA) complexes were investigated in this research (Table 18), and they exhibited higher consecutive formation constants than either the DHIBA or DHMIBA complexes. From this, it would not be unreasonable to assume that the formation constants of HIBA chelates cught to be higher than those of the other two ligands in the cases of Co(II), Ni(II), Zn(II), and Cd(II) as well. Therefore, the data obtained from this investigation confirms the parallel relationship between the ligand basicity and the stability constant in agreement with past observations, that is, both pK and logK increase in the order DHMIBA < DHIBA < HIBA. The plot in Figure 14 presents good evidence to support these two trends. One would expect to see similar parallel trends in Figure 14 in addition to the ones that already appear, if the formation constants of Co(II), Ni(II) and Zn(II) (perhaps Cd(II)) HIBA chelates were investigated under the same conditions as one studied in this research.

For both dihydroxy ligands (DHIBA and DHMIBA) the sequence of increasing formation constants proved to be the same: Co(II) < Ni(II) < Cu(II) > Zn(II) > Cd(II), which is in agreement with the well-known Irving-Williams order of stabilities (3, 4).

Because both ionic and covalent interactions are involved in these divalent metal complexes, the stability sequence ought to depend on the reciprocal of the ionic radius and the second ionization potential of the transition metals. However, from the ionic radius and second ionization potential values in Table 19, it is clearly very difficult to predict whether the orders for the non-adjacent metals Ni and Zn should be Ni(II) > Zn(II) or Ni(II) < Zn(II). Likewise it is unclear from the opposing trends whether the stability order should be Co(II) > Cd(II) or Co(II)<Cd(II). As a matter of fact both orders in each case are found in the literature (Table 3, 4, and 5). Apparently, the stabilities of these complexes depend also upon the nature of the ligand, thus no invariant order can be expected. For both ligands (DHIEA and DHMIEA) the sequence of non-adjacent metal complex stabilities is Ni(II) > Zn(II) and Co(II) = Cd(II).

Table 19. Thermodynamic data of some divalent transition metal (152)

	Co ⁺²	Ni ⁺²	Cu ⁺²	Zn ⁺²	Ca ⁺²
ionic radius (\hat{A}) second ionization potential (Kcal) ^a hydration energy $\Delta H_{hy}(Kcal)^{b}$	0.74 577.2 505	0.72 597.6 -519.5	0.69 649 -516.4	0.74 633.8 -503.0	0.92 600.3 -447
$a_{M(gas) \rightarrow M^{+2}(gas) + 2 e}^{a_{M(gas) \rightarrow M^{+2}(gas) + 2 e}}$					

For both ligands (DHIBA and DHMIBA) studied in this research, there is an increase in both formal charge and electron-donating power, compared with water; so, both electronic and covalent interactions are important in divalent transition metal complexes. If the percent ionic character in each complex could be calculated, one should be able to predict the stability trends of these complexes. Nevertheless, the relative steric hindrances of the ligands and the coordination geometry of each metal complex must also be taken into account.

Because of the Jahn-Teller effect in the d⁹ configuration of divalent copper, the tetragonally distorted octahedron (in which two trans metalligand distances are greater than the other four) is the most common structure in copper(II) complexes. The crystal structure of diaquobis- $(\alpha$ -hydroxyisobutyrato)copper(II) (Figure 2) is an example of this, having two waters in trans positions and two bidentate HIBA ligands which form trans-chelate rings in a square planar configuration (23). Bjerrum's statistical ratio theory (14) which was described previously has been applied for this system. The ratio of the successive formation constants $(K_{_{T}}/K_{_{O}})$, or the total effect (T), is equal to the product of a statistical term (S), a ligand repulsion effect (E) and a "rest" effect (R). The S term was calculated, using the configuration of diaquobis (α -hydroxyisobutyrato)copper(II) in Figure 2, to be 8. Because small ligands are involved in this system (HIBA, DHIBA, and DHMIBA), steric hindrance probably can be ignored, so R equals about 1. E values for the copper complexes in Tables 16, 17, and 18 (calculated using these assumptions) are then 1.10, 1.18, and 1.31 for DHMIBA, DHIBA, and HIBA, respectively. Manning (16) summarized the formation constant data on divalent copper

chelates, from Kolat and Powell (17) and Fronaeus (18), and found the E value was 1.75 for acetate. One can see then that E increases in the sequence: DHMIBA <DHIBA <HIBA <acetate, with the inductive effects on these ligands changing in the sequence (K_c : 3.06 x 10⁻⁴, 2.65 x 10⁻⁴, 1.60 x 10⁻⁴, and 2.80 x 10⁻⁵ for DHMIBA, DHIBA, HIBA and acetate, respectively). This is reasonable, because the E value is determined principally by the magnitude of the effective negative charge on the carboxyl group. K_1/K_2 values of 8.77 for DHMIBA, 9.39 for DHIBA, and 10.51 for HIBA, therefore, do not appear unreasonable, if one assumes that the $Cu(DHMIBA)_2$, $Cu(DHIBA)_2$, and $Cu(HIBA)_2$ species in solution all have the tetragonally distorted octahedron configuration (for which S equals 8) in agreement with the crystal structure of diaquobis(HIBA)copper(II) mentioned above.

No safe conclusions with regard to coordination geometry can be drawn in the cases of DHMIBA and DHIBA chelates of Co(II), Ni(II), Zn(II), and Cd(II). From Appendices D and E one can see that, the maximum \bar{n} achieved was less than 1 in these cases, thus the standard deviations for the K₂ values in Table 16 and 17 are prohibitively large.

The last point that will be considered in this system, before going to the next section, is whether both or only one hydroxyl group in DHIBA and DHMIBA participates in bonding to the metal cation. Warnke and Kwiatkowski (11) studied the stability of divalent transition metal complexes of propionate, α -hydroxypropionate and β -hydroxypropionate (Tables 3 and 5), and observed the stabilities of the chelate species increase in the series propionate $<\beta$ -hydroxypropionate $<\alpha$ -hydroxypropionate. From this sequence, the author suggested hydroxyl groups in α or β positions allow

the formation of five- and six-membered rings, respectively. Jones and Choppin (104) in another paper reported that the β -hydroxy group in β -hydroxypropionate is not involved in a chelate ring with the trivalent rareearth cations. In the case of ligands studied in this research, the stability of the chelate species increase in the order DHMIBA< DHIBA< HIBA. From this sequence, one is forced to conclude that only one hydroxyl group in either DHIBA or DHMIBA participates in bonding to divalent transition metals. The hydroxyl group in α -position is the one most likely to interact with the metal cations, because it allows formation of a fivemember ring as with the more stable HIBA chelates. If both hydroxyl groups interacted with these transition metal ions, one should observe stabilities of the chelate species of DHMIBA and DHIBA to be greater than in the case of HIBA. Since that is not the case, bidentate character (one from the α -hydroxyl and one from the carboxyl group) is suggested for DHIBA and DHMIBA. As a matter of fact, this suggestion agrees very well with Bjerrum's statistical ratio theory discussed above.

B. Rare-earth Dihydroxycarboxylate Complexes

Nearly pure ionic or electrostatic interaction between the donor group and the central atom in the rare-earth chelate species has been supported by a wealth of experimental evidence, especially magnetic (37, 39, 40, 41) and spectral data (37, 42). Assuming ionic character and because of the lanthanide contractions which causes the ionic radius of lanthanons to decrease smoothly as the atomic number increases (Figure 15), one should expect to see the Born relationship to hold true in all rare-

Figure 15. Atomic number versus 1/radius of trivalent rare-earth metals

earth complex systems (50, 51). That is, a linear relationship should predominate between logK and Z^2/r (or more generally 1/r) (K = formation constant, r = ionic radius and Z = charge). Some of the monohydroxycarboxylate ligands seem to behave principally in this fashion in forming complexes with the rare-earth cations. Some of the aminopolycarboxylates such as ethylenediaminetetraacetate, 1,2-diaminocyclohexanetetraacetate and nitrilotriacetate also show this expected trend. Recently, the rareearth N'-methylethylenediamine-N',N,N-triacetate (MEDTA) complexes were studied by Johnson (153), Powell, <u>et al</u>. (154), and the complex stabilities were found to increase quite regularly across the series from lighter rare-earths to heavier rare-earths. The authors (153) suggested that MEDTA acts as a pentadentate ligand across the entire series.

Both logK₁ of the lanthanon-DHIBA and the lanthanon-DHMIBA chelate species as a function of 1/r are plotted in Figure 16. A non-linear behavior is obtained in this plot, in contrast to the corresponding data for monohydroxycarboxylates complexes. Electrostatic interaction in the complexes alone fails to explain this behavior. Crystal-field effects and thermodynamic data failed to explain this in some other complexes (52-59); and, as a matter of fact, both crystal-field stabilization energies and thermodynamic data are not available for DHIBA and DHMIBA lanthanon complexes. The statistical ratios of the formation constants of the complexes formed between DHIBA and DHMIBA and rare earths are therefore considered the best way to obtain an explanation of this non-linear behavior.

Powell and Burkholder (65) proposed that in solution a change in coordination number of the hydrated rare-earth cations with ionic radius occurs

Figure 16. logK of rare-earth(III) DHIBA and DHMIBA complexes as a function of 1/r

from $10(La^{+3} - Nd^{+3})$ to $9(Dy^{+3} - Lu^{+3})$. Most of the nine-coordinated rare-earth complex crystal structures studied have been characterized as the distorted, tricapped, trigonal prism type by X-ray analysis (e.g., $Pr(H_2O)_2NTA \cdot H_2O$ (75) and $Eu(HOCH_2COO)_3$ (80)). If one assumes that in solution the trivalent rare-earth cations also have a distorted, tricapped, trigonal prism type molecular structure, Figure 5 becomes the model for discussing Bjerrum's statistical ratios.

The theoretical K_1/K_2 and K_2/K_3 ratios (or S terms) were calculated, using the configuration of $Eu(HOCH_2COO)_3$ in Figure 5, to be 4.92 and 4.875, respectively, for a tridentate ligand, and 3.27 and 4.125, respectively, for a bidentate ligand. The computations are summarized in Table 20, together with the corresponding experimented statistical ratios for DHIBA (Table 12) and DHMIBA (Table 14). ER (E = ligand repulsion effect, and R = rest effect values) were calculated only in the case of K_1/K_2 .

	Tridentate Case			Bidentate Case		
	к ₁ /к ₂	к ₂ /к ₃	ER	к ₁ /к ₂	к ₂ /к ₃	ER
Theoretical DHIBA DHMIBA	4.92 5.97 6.46 ^c	4.875 5.07 6.88 ^c	1 1.21 1.31	3.27, 4.62 4.80 ^d	4.125 5.25 6.28 ^d	1 1.41 1.47

Table 20. Data for Bjerrum's statistical ratio theory

^aAverage La to Nd. ^bAverage Dy to Lu, including Y. ^cAverage La to Sm. ^dAverage Ho to Lu, including Y. From the statistical ratios in Table 20, it does not appear unreasonable to assume that DHIBA is attracted to the lighter rare-earth cations (La to Nd) as a tridentate ligand, and that the ligand is attached bidentately rather than tridentately to the heavier rare-earth cations Dy to Lu (including Y). The intermediate lanthanons (Sm-Tb) chelates comprise a transitional set in which the character of the DHIBA anion decreases gradually from tridentate to bidentate. DHMIBA seems to behave in this fashion also, but it slightly changes the regions characteristic of each dentate character. For DHMIBA, the ligand acts tridentately from La to Sm and appears to be attached bidentately to the heavier rare-earth cations Ho to Lu (including Y). The intermediate rare-earth (Eu-Dy) chelates again comprise a transitional set in which the average character of the DHMIBA anion decreases gradually from tridentate to bidentate.

For the first ligand to complex, the hydroxyl group at the β -carbon of the chain in both DHIBA and DHMIBA is free to swing around in the case of a bidentate complex, but in the tridentate case it bonds directly to the metal cation. When free, the hydroxyl group provides both a steric effect (R) and repulsion effect (E) to the second incoming ligand. So, one should expect to see bigger values of ER in the bidentate case when compared to the tridentate case. This effect was found in this research (see Table 20), with both DHIBA and DHMIBA, ER (tridentate) is less than ER (bidentate). Also, a greater R effect is expected, with DIMIBA then with DHIBA in both the tri- and bidentate cases, due to the methyl group in the β -position in DHMIBA. The ER values in Table 20 agree very well with this prediction, that is, ER (DHIBA) < ER (DHMIBA) in both the tri-

Figure 17. The effect of temperature on the formation constants of rareearth-HEDTA complexes

and bidentate cases.

From the application of Bjerrum's statistical ratio theory mentioned above, one is forced to conclude that both DHIBA and DHMIBA attach tridentately to the lighter (larger) lanthanons, but bidentately to the heavier (smaller) lanthanons. One should obtain straight lines 2 and 4, in Figure 16, if both DHIBA and DHMIBA behaved as a tridentate ligand across the series, and straight lines 1 and 3 if they behaved as a bidentate ligands across the series. With this picture in mind, one can adequately explain the non-linear relationship between $\log K_1$ and 1/r as shown in Figure 16.

More evidence to support the change in dentate character of the ligand can be seen in Figure 17, the plot of logK of HEDTA lanthanon complexes at 15° , 40° (52) and 92° C (65). Powell and Burkholder (65) suggested that HEDTA always bonds pentadentately to the heavy lanthanons (Lu to Er), but that it attaches hexadentately to all the lighter lanthanons larger than Eu (the 6th donor atom of HEDTA is the oxygen of the hydroxyethyl group) at room temperature. At 92° , the bond of the hydroxyethyl group is broken, lowering the formation constants of the lighter lanthanons at this temperature. So, a nearly straight line is obtained at 92° because HEDTA behaves at that temperature purely as a pentadentate ligand across the entire series.

The effect of the hydroxyl group at the β -carbon in both DHIBA and DHMIBA is shown in Figures 18 and 19. The formation constants of DHIBA and α -hydroxylsobutyrate (HIBA) are compared in Figure 18, and the formation constants of DHMIBA and ethylmethylglycolate (EMG) are compared in Figure 19. In both cases, K₁ of the lighter lanthanon (La to Gd) dihy-

12lt

IONIC RADIUS

Figure 18. The first formation constants (K_1) of DHIBA and HIBA as a function of ionic radius

Figure 19. The first formation constants (K_1) of DHMIBA and EMG as a function of ionic radius

droxycarboxylate (DHIBA and DHMIBA) complexes are higher than in the case of the corresponding monohydroxycarboxylates (HIBA and EMG). This clearly suggests that the hydroxyl group at the β -carbon both in DHIBA and DHMIBA participates in bonding to the central atom. The stability relationship reverses for the heavier lanthanons (Tb to Lu) in both cases. In this situation, one is forced to conclude that the hydroxyl group at the β -carbon has nothing to do directly with the bonding of the ligands to smaller cations. The inductive effect of this group now causes weaker lanthanon complexation with DHIBA and DHMIBA than with EMG and HIBA.

The complex stabilities of DHIBA and DHMIBA lanthanon chelates are compared in Figure 20. From La through Sm both ligands appear to function tridentately, but from Eu to Tb the percentage of tridentate bonding decreases. Because of the inductive effect of the methyl group on the β -carbon and the buttressing steric effect of methyl groups on both the α - and β -carbons, the bond angle HOC-COH-COO should be smaller in DHMTBA than in DHIBA, and one should expect to see higher complex stabilities with DHMIBA from La through Tb. It appears that this argument holds only from Pr through Tb. One is led to the conclusion that the bond angle HOC-COH-COO in DHMIBA is now too small to satisfy the larger La⁺³ and Ce⁺³ cations as well as does DHIBA.

From Dy through Lu (and with Y), both DHIBA and DHMIBA attach only bidentately to the cation. The methyl group at β -carbon in DHMIBA donates electrons to the carboxyl group (inductive effect), so that the complex stabilities of DHMIBA should be greater than in the case of DHIBA. But, this is not the case, because the stability curve of DHMIBA in Figure 20 falls below the DHIBA curve. The reason for this is not completely clear.

Figure 20. The first formation constant of DHIBA, DHMIBA and THIB as a function of ionic radius

However, if a hydrogen bond between the unbonded hydroxyl group (β -position) and the unbonded oxygen of the carboxyl group occurs in both DHIBA and DHMIBA, the hydrogen bond in DHMIBA should be relatively greater than in DHIBA. This is because the steric effect between the methyl groups at the α - and β -positions in DHMIBA causes the bond distance between the hydroxy group at the β -carbon and oxygen of the carboxyl group to be shorter than in the case of DHIBA. If this is true, the behavior of the complex stabilities from Dy through Lu can be rationalized. As a matter of fact, divalent transition metals also form stronger complexes with bidentate DHIBA than in the case of the bulkier bidentate DHMIBA ligand.

A test of the above argument would be a study of the formation constants of rare-earth complexes with α,β -dihydroxy- β,β -dimethylisobutyrate and α,β,β' -trihydroxyisobutyrate ligands. One more methyl group at the β -carbon compared to DHMIBA should cause even more deviation from linearity in the stability sequence. Hydroxyl groups on both the β and β' -carbons in the later ligand should provide an unfavorable inductive effect that would lower the complex stabilities compared to DHIBA and DHMIBA. The first formation constants of the THIB ligand with lanthanons at 25° and β 0.5 are plotted in Figure 20. Because of the different conditions studied with this complex no firm conclusions can be drawn, but the trend of these data appears to confirm the above prediction.

VII. SUMMARY

The stoichiometric stepwise formation constants of the complex rare-earth(III) α,β -dihydroxyisobutyrate, rare-earth(III) α,β -dihydroxy- β -methylisobutyrate, transition metal(II) α,β -dihydroxyisobutyrate, transition metal(II) α,β -dihydroxy- β -methylisobutyrate and copper(II) α -hydroxyisobutyrate species were investigated. The stoichiometric acid dissociation constants of α -hydroxyisobutyric and α,β -dihydroxy- β -methylisobutyric acids were also measured. All the stoichiometric formation and acid dissociation constants were studied at an ionic strength of 0.1 M with potassium nitrate as the supporting electrolyte and at a temperature of 25°C using the potentiometric method. The pH was measured by a Beckman Research pH meter or a Corning Model 101 Digital Electrometer equipped with a sleeve-type calomel reference electrode and a glass electrode. The stoichiometric formation and acid dissociation constants were calculated by means of a weighted least squares program using an I.B.M. 360 computer.

For both dihydroxy ligands (DHIBA and DHMIBA) the sequence of increasing formation constants proved to be the same: $\text{Co}^{+2} < \text{Ni}^{+2} < \text{Cu}^{+2} >$ $\text{Zn}^{+2} > \text{Cd}^{+2}$, in agreement with the well-known Irving-Williams series. The stabilities of the divalent transition metal complexes increased in the order DHMIBA < DHIBA < HIBA. The molecular structure in solution of $\text{Cu}(\text{DHMIBA})_2$, $\text{Cu}(\text{DHIBA})_2$ and $\text{Cu}(\text{HIBA})_2$ was predicted to be a tetragonally distorted octahedral configuration from the statistical ratios observed, and in this configuration, bidentate ligands were proposed.

The anomalous trends in the stabilities of both the rare-earth DHIBA

and the rare-earth DHMIBA complexes were thought to result from a change in the dentate character of the ligands. Statistical ratios of successive formation constants were studied to predict the dentate character of the ligand in each complex. Both DHIBA and DHMIBA ligands appeared to bond the lighter rare-earth cations tridentately and the heavier rareearth cations bidentately. The proposed change in dentate character of these ligands was also supported by the observed higher formation constants of the lighter rare-earth DHIBA and DHMIBA complexes compared to the complexes of α -hydroxyisobutyrate and ethylmethylglycolate. This order of stabilities reversed direction with the heavier rare-earth chelates. Both inductive and steric effects of the methyl group at β -carbon position in DHMIBA seem to affect the formation constants. The DHMIBA chelate stabilities were lower than those for DHIBA with La and Ce, markedly higher from Pr through Tb, but then lower again from Dy through Lu.

VIII. BIBLIOGRAPHY

1.	D. P. Mellor and L. Maley, Nature, <u>159</u> , 370 (1947)
2.	D. P. Mellor and L. Maley, Nature, <u>161</u> , 436 (1948)
3.	H. Irving and R. J. P. Williams, Nature, <u>162</u> , 746 (1948)
4.	H. Irving and R. J. P. Williams, J. Chem. Soc., 3192 (1953)
5.	H. Thun, W. Guns and F. Verbeek, Anal. Chim. Acta, 37, 332 (1967)
6.	I. Filipović, I. Piljae, A. Medved, S. Savić, A. Bujak, F. Buch- Dragutinović and B. Mayer, Croat. Chem. Acta, <u>40</u> , 131 (1968)
7.	I. Filipović, T. Matusinović, B. Mayer, I. Piljae, B. Buch- Dragutinović and A. Bujak, Croat. Chem. Acta, <u>42</u> , 541 (1970)
8.	Y. Murakami, K. Nakamura and M. Tokunaga, Bull. Chem. Soc., Japan, <u>36</u> , 669 (1963)
9.	E. Roletto, A. Vanni and G. Ostacoli, J. Inorg. Nucl. Chem., <u>34</u> , 2817 (1972)
10.	G. Ostacoli, E. Campi, A. Vanni and E. Roletto, Ric. Sci., <u>36</u> , 472 (1966)
11.	Z. Warnke and E. Kwiatkowski, Roczniki Chem., <u>47</u> , 467 (1973)
12.	M. N. Patel and R. P. Patel, J. Inorg. Nucl. Chem., <u>35</u> , 2589 (1973)
13.	J. R. Shah and R. P. Patel, J. Inorg. Nucl. Chem., <u>35</u> , 2589 (1973)
14.	J. Bjerrum, <u>Metal Ammine Formation in Aqueous Solution</u> , P. Haase and Son, Copenhagen, 1941.
15.	J. E. Powell, <u>Mimeographed Paper</u> , Chemistry Department, Iowa State University, Ames, Iowa, 1967.
16.	P. G. Manning, Can. J. Chem., <u>43</u> , 3258 (1965)
17.	R. S. Kolat and J. E. Powell, Inorg. Chem., <u>1</u> , 293 (1962)
18.	S. Fronaeus, Ph.D. Thesis, Gleerupska University, Lund, Sweden, 1948.
19.	I. Lundquist, Acta Chem. Scand., <u>18</u> , 858 (1963)
20.	J. E. Powell and D. L. G. Rowlands, J. Inorg. Nucl. Chem., <u>29</u> , 1729, (1967)

•

- 21. F. A. Cotton and G. Wilkinson, <u>Advanced Inorganic Chemistry</u>, John Wiley and Sons, New York, 1966.
- 22. J. M. Waters and K. R. Whittle, J. Inorg. Nucl. Chem., <u>34</u>, 155 (1972)
- 23. C. K. Prout, R. A. Armstrong, J. R. Carruthers, J. G. Forrest, P. Murray-Rust, and F. J. C. Rossotti, J. Chem. Soc., A 11, 2791 (1968)
- 24. A. Mawby and H. M. N. H. Irving, J. Inorg. Nucl. Chem., 34, 109 (1972)
- 25. S. Chaberek and A. E. Martell, Organic Sequestering Agents, John Wiley and Sons, New York, 1959.
- 26. L. G. Sillen and A. E. Martell, <u>Stability Constants of Metal Ion</u> Complexes, The Chemical Society of London Special Pub. No. 17, 1964.
- M. H. Mihailov, V. Ts. Mihailova and V. A. Khalkin, J. Inorg. Chem., <u>36</u>, 121 (1974)
- 28. H. M. Hershenson, R. Th. Brooks and M. E. Murphy, J. Amer. Chem. Soc., <u>79</u>, 2046 (1957)
- M. Yasuda, K. Yamasaki and H. Ohtaki, Bull. Chem. Soc., Japan, <u>33</u>, 1067 (1960)
- 30. M. Tanaka, J. Inorg. Nucl. Chem., <u>36</u>, 151 (1974)
- 31. A. Sandell, Acta Chem. Scand., 23, 478 (1969)
- 32. M. H. Mihailov, V. Ts. Mihailova and V. A. Khalkin, J. Inorg. Nucl. Chem., <u>36</u>, 133 (1974)
- 33. J. E. Powell and D. K. Johnson, J. Chromatog., 44, 212 (1969)
- 34. E. Roletto, A. Vanni and G. Ostacoli, J. Inorg. Nucl. Chem., <u>34</u>, 2817 (1972)
- 35. B. Folkesson and R. Larsson, Acta Chem. Scand., 22, 1953 (1968)
- 36. W. P. Evans and C. B. Monk, J. Chem. Soc., 550 (1954)
- 37. T. Moeller and E. P. Horwitz, J. Inorg. Nucl. Chem., 12, 49 (1959)
- 38. J. H. Van Vleck and A. Frank, Phys. Rev., <u>34</u>, 1494, 1625 (1929)
- 39. J. J. Fritz, I. Grenthe, P. E. Field and W. C. Fernelius, J. Amer. Chem. Soc., <u>82</u>, 6199 (1960)
- 40. J. J. Fritz, P. E. Field and I. Grenthe, J. Phys. Chem., <u>65</u>, 2070 (1961)

- 41. R. C. Axtmann, J. Chem. Phys., 30, 340 (1959)
- 42. D. M. Yost, H. Russell, Jr. and C. S. Garner, The Rare-Earth Elements and Their Compounds, John Wiley and Sons, Inc., New York, 1947. Ch. 3.
- 43. J. M. Birmingham and G. Wilkinson, J. Amer. Chem. Soc., 78, 42 (1956)
- 44. G. Wilkinson and J. M. Birmingham, J. Amer. Chem. Soc., <u>76</u>, 6210 (1954)
- 45. C. K. Jorgensen, Orbitals in Atoms and Molecules, Academic Press, New York, 1962. Ch. 11.
- 46. C. K. Jorgensen, R. Pappalardo and H. H. Schmidtke, J. Chem. Phys., <u>39</u>, 1422 (1963)
- 47. F. Ephraim and R. Bloch, Berichte, 59, 2692 (1926)
- 48. F. Ephraim and R. Bloch, Berichte, 61, 65, 72, 81 (1928)
- 49. T. Moeller, <u>The Rare Earths</u>, edited by F. H. Spedding and A. H. Daane, John Wiley and Sons, Inc., New York, 1961. Ch. 11.
- 50. T. Moeller, L. C. Thompson and R. Ferrús, <u>Rare Earth Research</u>, edited by E. D. Kleber, The Macmillan Company, New York, 1961. p. 3.
- 51. I. Grenthe and W. C. Fernelius, <u>Rare Earth Research</u>, edited by E. D. Kleber, The Macmillan Company, New York, 1961. p. 12.
- 52. T. Moeller and R. Ferrus, J. Inorg. Nucl. Chem., 20, 261 (1961)
- 53. F. H. Spedding, J. E. Powell and E. J. Wheelwright, J. Amer. Chem. Soc., <u>78</u>, 34 (1956)
- 54. R. E. Powell and W. M. Latimer, J. Chem. Phys., 19, 1139 (1951)
- 55. R. H. Betts and O. F. Dahlinger, Can. J. Chem., 37, (1959)
- 56. R. Harder and S. Chaberek, J. Inorg. Nucl. Chem., 11, 197 (1959)
- 57. T. Moeller and L. C. Thompson, J. Inorg. Nucl. Chem., 24, 499 (1962)
- L. A. K. Staveley and T. Randall, Discussions Faraday Soc., <u>26</u>, 157 (1958)
- 59. G. R. Choppin and J. A. Chopoorian, J. Inorg. Nucl. Chem., <u>22</u>, 97 (1961)
- 60. G. Schwarzenbach, Advances in Inorganic Chemistry and Radiochemistry, edited by H. J. Emeleus and H. G. Sharpe, Academic Press, New York, 1961. Vol. 3, p. 265.

- 61. E. J. Wheelwright, F. H. Spedding and G. Schwarzenbach, J. Amer. Chem. Soc., <u>75</u>, 4196 (1953)
- T. Moeller, F. H. Moss and R. H. Marshall, J. Amer. Chem. Soc., <u>77</u>, 3182 (1955)
- 63. J. W. Cobble, J. Chem. Phys., 21, 1451 (1953)
- 64. J. E. Powell and H. R. Burkholder, J. Chromatogr., 29, 210 (1967)
- 65. J. E. Powell and H. R. Burkholder, J. Chromatogr., <u>36</u>, 99 (1968)
- 66. F. H. Spedding, D. A. Csejka and C. W. DeKock, J. Phys. Chem., <u>70</u>, 2423 (1966)
- 67. F. H. Spedding and M. J. Pikal, J. Phys. Chem., 70, 2430 (1966)
- 68. F. H. Spedding, M. J. Pikal and B. O. Ayers, J. Phys. Chem., <u>70</u>, 2440 (1966)
- 69. F. H. Spedding and K. C. Jones, J. Phys. Chem., 70, 2450 (1966)
- 70. D. R. Fitzwater and R. E. Rundle, Z. Kristallogr, 112, 362 (1959)
- 71. S. L. Bertha and G. R. Choppin, Inorg. Chem., 8, 613 (1969)
- 72. M. D. Lind, B. Lee and J. L. Hoard, J. Amer. Chem. Soc., <u>87</u>, 1611 (1965)
- 73. J. L. Hoard, B. Lee, and M. D. Lind, J. Amer. Chem. Soc., <u>87</u>, 1612 (1965)
- 74. Byungkook Lee, Ph.D. Thesis, Cornell University, 1967.
- 75. L. L. Martin and R. A. Jacobson, Inorg. Chem., <u>11</u>, 2785 (1972)
- 76. L. L. Martin and R. A. Jacobson, Inorg. Chem., 11, 2789 (1972)
- 77. L. J. Radonovich and M. D. Glick, J. Inorg. Nucl. Chem., <u>35</u>, 2745 (1973)
- 78. I. Grenthe, Acta Chem. Scand., 25, 3721 (1971)
- 79. I. Grenthe, Acta Chem. Scand., 23, 1752 (1969)
- 80. I. Grenthe, Acta Chem. Scand., 25, 3347 (1971)
- 81. J. E. Powell and D. L. G. Rowlands, Inorg. Chem., 5, 819 (1966)
- 82. J. E. Powell, A. R. Chughtai and J. W. Ingemanson, Inorg. Chem., <u>8</u>, 2216 (1969)

- 83. S. P. Sinha, Complexes of the Rare Earths, Pergamon Press, Oxford, 1966.
- 84. T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrús, G. R. Feistel and W. J. Randall, Chem. Rev., <u>65</u>, No. 1, (1966)
- 85. J. E. Powell, R. S. Kolat and G. S. Paul, Inorg. Chem., 3, 518 (1964)
- 86. W. R. Stagg and J. E. Powell, Inorg. Chem., <u>3</u>, 242 (1964)
- 87. G. R. Choppin and A. J. Graffeo, Inorg. Chem., 4, 1254 (1965)
- 88. I. Grenthe, Acta Chem. Scand., 18, 283 (1964)
- 89. V. Kumok and V. Serebrennikon, Russ. J. Inorg. Chem., 10, 1095 (1965)
- 90. I. Grenthe and I. Tobiasson, Acta Chem. Scand., 17, 2101 (1963)
- 91. J. E. Powell and D. K. Johnson, J. Inorg. Nucl. Chem., <u>33</u>, 3586 (1971)
- 92. J. E. Powell, J. L. Farrell, W. F. S. Neillie and R. Russell, J. Inorg. Nucl. Chem., <u>30</u>, 2223 (1968)
- 93. C. D. Devine, Ph.D. Thesis, Iowa State University, 1967.
- 94. J. E. Powell, R. H. Karraker, R. S. Kolat and J. L. Farrell, <u>Rare</u> <u>Earth Research II</u>, edited by K. S. Vorres, Gordon and Breach Science <u>Publishers</u>, New York, 1964. p. 509.
- 95. H. Thun, F. Verbeek and W. Vanderleen, J. Inorg. Nucl. Chem., <u>28</u>, 1949 (1966)
- 96. H. Deelstra and F. Verbeek, Anal. Chim. Acta, <u>31</u>, 251 (1964)
- 97. J. E. Powell and Y. Suzuki, Inorg. Chem., 3, 690 (1964)
- 98. M. A. Gouveia and R. G. De Carvalho, J. Inorg. Nucl. Chem., <u>28</u>, 1983 (1966)
- 99. A. Sonesson, Acta Chem. Scand., 13, 998 (1959)
- 100. L. Eeckhaut, F. Verbeek, H. Deelstra and J. Hoste, Anal. Chim. Acta, <u>30</u>, 369 (1964)
- 101. H. Thun and F. Verbeck, J. Inorg. Nucl. Chem., 27, 1813 (1965)
- 102. J. E. Powell, G. S. Paul, B. D. Fleischer, W. R. Stagg, and Y. Suzuki, USAEC Report IS-900, 1964.
- 103. R. Roulet and T. Vu Duc, Helv. Chim. Acta, <u>53</u>, 1873 (1970)

- 104. A. D. Jones and G. R. Choppin, J. Inorg. Nucl. Chem., <u>31</u>, 3523 (1969)
- 105. A. Unmack, Z. Phys. Chem., <u>133</u>, 45 (1928)
- 106. W. K. McEwen, J. Amer. Chem. Soc., 58, 1124 (1936)
- 107. G. N. Lewis and M. Randall, J. Amer. Chem. Soc., 43, 1112 (1921)
- 108. P. Debye and E. Hückel, Physik. Z., 24, 185 (1923)
- 109. H. S. Harned, J. Amer. Chem. Soc., <u>57</u>, 1865 (1935)
- 110. H. S. Harned and B.B. Owen, <u>The Physical Chemistry of Electrolytic</u> Solutions, 3rd ed., Reinhold Publishing Co., Inc., New York, 1951.
- 111. J. E. Powell and W. F. S. Neillie, J. Inorg. Nucl. Chem., <u>29</u>, 2371 (1967)
- 112. J. E. Powell and J. W. Ingemanson, Inorg. Chem., 7, 2459 (1968)
- 113. A. Ellilä, Acta Chem. Scand., 8, 1259 (1954)
- 114. M. Kilpatrick, J. Amer. Chem. Soc., 75, 584 (1953)
- 115. N. R. Draper and H. Smith, <u>Applied Regression Analysis</u>, <u>lst ed.</u>, John Wiley and Sons, Inc., <u>New York</u>, 1966.
- 116. T. Moeller, J. Phys. Chem., 50, 242 (1946)
- 117. G. Biedermann and L. Ciavatta, Acta Chem. Scand., 15, 1347 (1961)
- 118. N. Bjerrum, Kgl. Danske Videnskab Selskabs Skrifter, (7) <u>12</u>, No. 4 (1915)
- 119. N. Bjerrum, Z. Anorg. Allg. Chem., 119, 179 (1921)
- 120. F. J. C. Rossotti and H. Rossotti, <u>The Determination of Stability</u> <u>Constants and Other Equilibrium Constants in Solution</u>, McGraw-Hill, <u>New York</u>, 1961.
- 121. A. E. Martell, <u>Coordination Chemistry</u>, Von Nostrand Reinhold Company, New York, 1971. Vol. 1.
- 122. M. M. Jones, Elementary Coordination Chemistry, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1964.
- 123. J. C. Sullivan, J. Rydberg and W. F. Miller, Acta Chem. Scand., <u>13</u>, 2023 (1959)
- 124. A. E. Harvey and D. L. Manning, J. Amer. Chem. Soc., <u>72</u>, 4488 (1950)

- 125. A. S. Meyer and G. H. Ayres, J. Amer. Chem. Soc., <u>79</u>, 49 (1957)
- 126. P. Job, Annales De Chinie (11) 6, 97 (1936)
- 127. M. M. Jones, J. Amer. Chem. Soc., <u>81</u>, 4495 (1959)
- 128. K. O. Watkins and M. M. Jones, J. Inorg. Nucl. Chem., 24, 809 (1962)
- 129. W. C. Vosburgh and J. F. Beckmann, J. Amer. Chem. Soc., <u>62</u>, 1028 (1944)
- 130. C. E. Crouthamel and D. S. Martin, Jr., J. Amer. Chem. Soc., <u>72</u>, 1382 (1950)
- 131. A. E. Martell and M. Calvin, <u>Chemistry of the Metal Chelate Compounds</u>, Printice Hall, Inc., Englewood Cliffs, N.J., 1952. Ch. 2.
- 132. B. P. Block and G. H. McIntyre, Jr., J. Amer. Chem. Soc., <u>75</u>, 5667 (1953)
- 133. W. J. Randall, D. F. Martin and T. Moeller, Proc. Chem. Soc., 340 (1961)
- 134. F. Helfferich, Ion Exchange, McGraw-Hill, New York, 1962. p. 202.
- 135. J. E. Salmon, Reviews of Pure and Applied Chem., 6, No. 1, 24 (1956)
- 136. S. Fronaeus, Acta Chem. Scand., <u>5</u>, 859 (1951)
- 137. S. Fronaeus, Acta Chem. Scand., <u>6</u>, 1200 (1952)
- 138. S. Fronaeus, Acta Chem. Scand., 7, 21 (1953)
- 139. A. Mahan and A. K. Dey, J. Inorg. Nucl. Chem., <u>35</u>, 3263 (1973)
- 140. F. J. C. Rossotti and H. Rossotti, Acta Chem. Scand., 9, 1166 (1955)
- 141. W. R. Stagg, Ph.D. Thesis, Iowa State University, 1963.
- 142. W. R. Stagg and J. E. Powell, USAEC Report IR-727 (1963)
- 143. P. Melikoff, Justus Liebigs Ann. Chem., 234, 197 (1886)
- 144. P. Melikoff and P. Petrenko-kritschenko, Justus Liebigs Ann. Chem., 257, 116 (1890)
- 145. R. Fittig and M. Penschuck, Justus Liebigs Ann. Chem., 283, 109 (1894)
- 146. G. S. Mayers, P. Morozovitch, W. L. Glen, R. Barber, G. Papinean-Couture and G. A. Grant, J. Amer. Chem. Soc., <u>77</u>, 3348 (1955)

- 147. J. E. Powell, S. Kulprathipanja, D. A. Johnson and H. R. Burkholder, J. Chromatogr., 74, 265 (1972)
- 148. J. E. Powell, H. R. Burkholder and J. L. Farrell, J. Chromatogr., 57, 309 (1971)
- 149. J. W. E. Glattfeld and L. P. Sherman, J. Amer. Chem. Soc., <u>47</u>, 1742 (1924)
- 150. M. L. Adolphson, Ph.D. Thesis, Iowa State University, 1969.
- 151. J. S. Fritz and G. H. Schenk, <u>Quantitative Analytical Chemistry</u>, Allyn and Bacon, Boston, 1969.
- 152. F. B. Harvey and G. B. Porter, Physical Chemistry, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1963.
- 153. D. A. Johnson, Ph.D. Thesis, Iowa State University, 1973.
- 154. J. E. Powell, D. A. Johnson, H. R. Burkholder and S. C. Vick, J. Chromatogr., 87, 437 (1973)
IX. APPENDIX A:

ACID DISSOCIATION CONSTANTS OF α, β -DIHYDROXY- β -METHYLISOBUTYRIC AND α -HYDROXYISOBUTYRIC ACIDS

.

.

KC OF DHMIBA-X,

RUN2 NOVEMBER11 1971

DRIG ACIC CCNC. = 0.09930 CRIG KOH CONC. = 0.04953 PUFFER ACIC CONC. = 0.04972 BUFFER SALT CCNC. = 0.04972 BUFFER SALT CCNC. = C.04958 FINAL SOLN. VOLUME = 100.00 CONC. SALT ACDEC = 1.25010 ST. LINE E0. FOR KA & ANION DATA IS Y = 0.30554E-03+(-0.52180E-03)*(X) IONIC STRENGTH= C.10CCC

AMPLE	VACID	VBASE	РН	ANICN	KA	LSTSCKA	ERROR	VKN03
,	3.00	3.00	3.6457	0.171352-02	0.30614E-03	0.30504E-03	0.36	7.619
2	6 00	4.00	3.6200	0-22231E-02	0.304925-03	0.30478E-03	0.05	7.579
2	4. 00	5 00	3.6025	0.272878-02	0.304755-03	0.30451E-03	0.08	7.540
5	5.00	× 00	3 5604	0-32316E-02	0.304395-03	0.30425E-03	0.05	7.501
4	0.00	8.00	3 5746	0 423275-02	0-30374E-03	0-30373E-03	0.00	7.423
5	8.00	8.00	3 5455	0 473425-02	0.306345-03	0-30347E-03	0.95	7.384
6	9.00	9.00	3.5655	0 522215-02	0-305265-03	0-303216-03	0.68	7.346
7	10.00	10.00	3.3021	0.525212-02	0.301275-03	0 302695-03	-0.47	7.269
9	12.00	12.00	3.5600	0.62250E-C2	0.301276-03	0.302175-03	-0-65	7.192
9	14.00	14.00	3.5561	0.721916-02	0.300218-03	0.302172-03	-0.69	7 115
10	16.00	16.00	3.5522	0.82132E-02	0.30009E-03	0.301656-03	-0.52	7.115
11	18.00	18.00	3.5490	0,920695-02	0.300C8E-03	0.30113E-03	-0.35	7.038
12	20-00	20.00	3.5462	0.10200E-01	0.30023E-03	0.30061E-03	-0.13	6.961
13	22.00	22.00	3.5455	0.11192E-01	0.29917E-03	0.300102-03	-0.31	6.884
14	24 00	24.00	3.5450	0.12184E-01	0.298245-03	0.29958E-03	-0.45	6.807
1-7	24.00	26 00	3.5440	0-131776-01	0.29786E-03	0.29906E-03	-0.40	6.730
15	20.00	20.00	2 5428	0 141695-01	C-29777E-03	0.29854E-03	-0.26	6.653
16	28.00	20.00	2.5100	0.151625-01	0 208655-03	0-258035-03	0.31	6.576
17	30.00	30.00	3.5400	0.191822-01	0.200226 03	0 207515-03	0 24	6.499
18	32.00	32.00	3.5400	0.16154E-01	0-298236-03	0.297516-03	0.24	6 206
19	35.00	35.00	3.5398	0.176428-01	0.25744E-03	0.296736-03	0.24	0.504
20	40.00	40.00	3.5398	0.20121E-01	0.29621E-03	0.29544E-03	0.26	6.192
21	45.00	45.CO	3.5400	0.22599E-01	0.295115-03	0.29414E-03	0.33	6.000

ĸ OF DHMIEA-SQRT(X) RUN1+2 NOVEMBER11 1971

•

																																A	
32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	1 5	14	13	12	11	10	9	8	7	σ	თ	4	ين	2		MPL E	ECRIG EUFFER FINAL ST - LI
45.00	45.00	40.00	40.00	35.00	35.00	32.00	32.00	30.00	30.00	28.00	28.00	26.00	26.00	24.00	24.00	22.00	22.00	20.00	20.00	18.00	18.00	16.00	16-00	14.00	14.00	12.00	8.00	7.00	6.00	5.00	4.00	VACID	ACH CCNC ACH CCNC SALT CCNC SALT CCNC SALT ADDED SALT ADDED SALT ADDED SALT ADDED
45.00	45.00	40.00	40.00	35.00	35.00	32.00	32.00	30.00	30.CO	28.00	28.CO	26.00	26.00	24.00	24.00	22.00	22.00	20.00	20.00	18.00	18.00	16.00	16.00	14.CO	14.00	12.00	8.00	7.00	6.00	5.00	4.00	VEASE	= 0.04958 = 0.04958 = C.04958 = C.04958 = 100.00 = 100.00 KA & ANION KA & ANION
3.5418	3.5400	3.5410	3.5378	3 5420	3.5398	3.5422	3.5400	3.5429	3.5400	3.5440	3.5428	3.5450	3.5440	3.5460	3.5450	3.5467	3.5455	3.5490	3.5462	3.5522	3.5490	3.5526	3.5522	3.5565	2•5561	3.5600	3.5746	3.5665	3.5904	3.6025	3.€200	PH	DATA IS Y =
0.22598E-C)	0-36552	0.201206-01		0.1/04/05-01	0.176426-01	0.16153E-CI	0.16154E-01	0.15160E-C1	0.15162E-01	0.14168E-01	0.14169E-01	0.13176E-01	0.13177E-01	0-12184E-01	0.12184E-01	0-11192E-01	0.11192E-01	0-101986-01	0-10200E-01	0.92048E-02	0.92069E-G2	0.82130E-02	0.82132E-02	0.72188E-02	0.72191E-02	0.62250E-02	0-42327E-C2	0.37297E-02	0.32316E-02	0.272876-02	0.22231E-02	ANICN	- C.30835E-C3+(
C.293865-03	0.295116-03				0.25144E-03	0.256662-03	0-298236-03	C-296882-C3	0-29855E-03	0.29652E-03	C-2977E-C3	0.297142-03	0.29786E-03	0.29752E-C3	0.29824E-03	0-298316-03	0.29517E-03	0.29819E-03	C.30023E-03	2 0.29774E-03	0.300C8E-C3	2 0.295792-03	0.30009E-03	2 0-29951E-03	2 0.30021E-03	0.301275-03	2 0.30374E-03	0.300026-03	2 0.30439E-03	2 0.30475E-03	0.30492E-03	κa	-0.90660E-04)*S
50-321462.0			C - 307405 U		0.30101010		0.256836-03	50-37175 0	E0-361/62.0	0.25/56E-02	0.25756503	E0-346/62.0	0.25794E-03	0.298346-03	0.258348-03	0.25876E-03	0-29876E-03	0- <u>3</u> 61662°0	0-25919E-03	0-295656-03	0.29965E-03	0-30013E-03	0.30013E-03	0.30065E-03	0-30065E-03	0.30120E-03	0.30245E-03	0.30281E-03	0.30319E-03	0-30361E-03	0.30407E-03	LSTSQKA	2RT (X)
-0-24				0-24				-0-10		-0.22		-0.21	-0.03	-0-28	-0.03	-0.15	3 0.14	3 -0.34	0.35	-0.64	0.14	-0.11	-0.01	-0.25	+0.15	0.02	0.43	26.0-	0.39	0.37	3 0-28	ERROR	
0.000			6-192	61192	785 7 405°0	785 7	C.499	0.00	010.0	0.000		0.130	6.730	0.807	£ 08 9	6.884	6.884	6.961	196 9	AF0.1	8F0-1	7.115	- 11 5	261.1	2.61.4	7.269	1.423	7.462	1001	1.540	7.579	VKND3	

.

Z†Z

KC DF CHMIEA-X,X**Z RUNI NCVEMBERI 1971

CRIG ACID CONC. = C.C5930
ORIG KOH CCNC. = C.04958
EUFFER ACID CCNC. = C.04978
EUFFER ACID CCNC. = C.04572
BUFFER SALT CCNC. = C.04572
BUFFER SALT CCNC. = C.04572
SIT CCNC. = C.04578
CONC. SALT ACID = C.04578
CONC. SALT ACIDE = 1.2501C
CONC. SALT ACIDE = 1.2501C
CONC. ST. LINE EQ. FOR KA E ANION DATA IS
CONC STRENGTH = 0.10CCC

0.17424E-03)*(X)+(-0.15620E-01)*(X)**2

29751E-03+(

۔ ٥ ١

≻

VK NC3 ERROR STS QKA ΚA 0.170925-02 0.22150E-02 0.22259E-02 0.32269E-02 0.37297E-02 0.47275E-02 0.47275E-02 0.47275E-02 0.47275E-02 0.522465-02 0.72188E-02 0.72188E-02 0.72188E-02 0.72188E-02 0.11192E-01 0.11192E-01 0.11192E-01 0.11192E-01 0.11192E-01 0.11192E-01 0.11192E-01 0.11192E-01 0.15160E-01 0.17640E-01 0.17640E-01 0.17640E-01 0.17640E-01 ANICN Ηd VEASE VACID U) ANPL

.

CRIG ACIC CCNC. = 0.10786 ORIG KOH CCNC. = 0.024987 EUFFER ACID CCNC. = 0.05799 EUFFER SALT CCNC. = 0.04987 FINAL SOLN. VOLUME = 200.00 CONC. SALT ACDEC = 1.88800 ST. LINE EQ. FOR KA & ANION DATA IS Y = 0.15562E-03+(-0.26159E-03)*(X) IONIC STRENGTH= 0.100CC

20

.

AMPLE	VACID	VBASE	PH	ANICN	KA	LSTSQKA	ERROR	VKN03
1	16.00	16.CO	3.7670	0.416C6E-02	0.15923E-03	0.15853E-03	0.44	10.152
2	16.00	16.00	3.7678	0.41603E-02	0.15891E-03	0.15853E-03	0.24	10.153
3	17.00	37.00	3.7668	0.44100E-02	0.158575-03	0.158462-03	0.07	10.126
4	17.00	17.00	3.7665	0.44101E-02	0.158682-03	0.15846E-03	0.14	10.126
Ś	18.00	1.8.00	3.7660	0.46597E-02	0.15822E-03	0.15840E-03	-0.11	10.100
6	19.00	1.5.00	3.7660	0.49090E-02	0.15763E-03	0.15833E-03	-0.44	10.073
7	19.00	1.9.00	3.7660	0.49090E-02	0.157635-03	0.15833E-03	-0.44	10.073
8	20.00	20.00	3.7648	0.51589E-02	0.15757E-C3	0.15827E-03	-0.44	10.047
9	20.00	20.00	3.7640	0.51592E-02	0.15788E-03	0.15827E-03	-0.25	10.047
10	22.00	22.00	3.7610	0.56591E-02	0.158115-03	0.15814E-03	-0.01	9.994
11	22-00	22,00	3.7600	0.565958-02	0.15850E-03	0.15814E-03	0.23	9.994
12	23.00	23.00	3.7600	0.590888-02	0.15810E-03	0.15807E-03	0.02	9.967
13	24.00	24.00	3.7585	0.615898-02	0.15830E-03	0.15801E-03	0.19	9.941
14	25.00	25.00	3.7583	0.640822-02	0.158048-03	0.15794E-03	0.06	9.914
15	26.00	25.00	3.7573	0.665802-02	0.15810E-03	0.15787E-03	0.14	9.888
16	26.00	26.00	3.7573	0.66580E-02	0.15810E-03	0.15787E-03	0.14	9.888
17	27.00	27.CO	3.7568	0.69075E-02	0.15800E-03	0.15781E-03	0.12	9.861
18	28.00	28.00	3.7568	0.71569E-02	0.157735-03	0.15774E-03	-0.01	9.835
19	28.00	28.00	3.7564	0.715702-02	0.157886-03	0.15774E-03	0.09	9.835
20	29.00	29.00	3.7564	0.74064E-02	0.157635-03	0.15768E-03	-0.03	9.809
21	30.00	30.00	3.7564	0.76557E-02	0.157392-03	0.15761F-03	-0.14	9.782
22	30.00	30.00	3.7565	0.76557E-02	0.157358-03	0.15761E-03	-0.17	9.782
23	31.00	31.00	3.7564	0.79051E-02	0.157172-03	0.157558-03	-0.24	9.756
24	32.00	32.00	2.7543	0.815535-02	0.15776E-03	0.15748E-03	0.17	9.729
25	32.00	32.00	3.7542	0.81553 5 -02	0.157795-03	0.157488-03	0.20	9.729
26	33.00	33.00	3.7543	0.840465-02	0.157568-03	0.157420-03	0.09	9.703
27	34.00	34.00	3.7543	0.865405-02	0.157385-03	0.157352-03	0.02	9.676
28	34.00	34.00	3.7543	0.865408-02	0.157385-03	0.15735E-03	0.02	9.676
29	35.00	35.00	3.7542	0.89034E-02	0.15724E-03	0.15729F-03	-0.03	9.650
30	35.00	35.00	3.7540	0.89034E-02	0.157323-03	0.15729E-03	0.02	9.650
31	36.00	36.00	3.7537	0.91529E-C2	0.15727E-03	0.157222-03	0.03	9.624
32	37.00	37.00	3.7530	0.540255-02	0.157375-03	0.15716E-03	0.14	9.597
33	38.00	38.00	3.7530	0.965198-02	0.15723E-03	0.157098-03	0.09	9.571
34	38.00	36.00	3.7530	0.965192-02	0.157232-03	0.15709F-03	0.09	9.571
35	40.00	40.00	3.7537	0.101502-01	0.156693-03	0.156968-03	-0.17	9.518
36	40.00	40.00	3.7540	0.101508-01	0.156583-03	0.15696E-03	-0.24	9.518

.

.

X. APPENDIX B:

FORMATION CONSTANTS OF RARE-EARTH α , β -DIHYDROXYISOBUTYRATE COMPLEXES

STABILITY CONSTANT OF LAB-OHIDA RUN 2 NOVEMBER 3 1972

 CRIG ACID CONCENTRATION = 0.09359
 IONIC STRENGTH OF SOLUTION = 0.1000

 ORIG BASE CONCENTRATION = 0.05015
 POTASSIUM NITRATE CONC. = 1.8880

 PUFFER ACID CONC. = 0.04344
 VOLUMF OF METAL ION SOL. = 4.00

 PUFFER SALT CONC. = 0.05015
 CONC. OF METAL ION SOL. = 0.10061

 RATIO OF THE VKOH TO VB = 1.0000
 CONC. EXCESS ACID IN METAL = 0.0

 FINAL SCLUTION VOLUMF = 200.00
 STRAIGHT LINE EQUATION = 0.26500°-03+(-0.60000E-04)*SQ
 RT(X)

(1)	٧B	ANIO	N CEN	N EXP	N CALC	ERROR	РН	KA USED	KA THEO	VOL KNC3
1	6.000	0.104	635-22	0.358	0.359	-0-42	3.5820	0.263066-0	0.26229E-03	9.381
2	8.000	0.133	74-02	0.445	0.445	-0.02	3.5580	0.26276E-0	0.262735-03	9.383
3	10.000	0.173	737-02	0.524	0.523	0.32	3.5450	0.26250E-0	0.26301E-03	9.379
4	11.000	0.191	625-02	C.561	C.559	C.40	3.5410	0.262378-0	0.26299E-03	9.375
5	12.000	0.209	65:	0.597	C.594	C.54	3.5380	0.252252-0	0.26306E-03	9.370
6	14.000	3.246	906-02	0.663	0.660	0.34	3.5350	0.262020-0	0.262495-03	9.358
7	16.000	C.285	667-C2	C.719	3.723	-0.51	3.5350	0.261798-0	0.261112-03	9.342
8	18.000	0.324	382-02	0.776	C.790	-0.48	3.5350	0.26158E-0	0.26097E-03	9.322
q	20,000	0.303	955-02	0.823	0.833	-0.57	3.5360	0.261382-0	0.26C69E-03	9.300
10	22.000	C.403	654-C2	C.99C	C.382	-0.28	3.5370	0.26119E-0	0.26C87E-03	9.274
11	25.000	C.465	14 02	0.947	0.952	-C.49	3.5400	0.260918-0	0.260385-03	9.233
12	28.000	0.525	105-02	1.017	1.014	C•34	3.5420	C.26065E-0	0.26C99E-03	9.187
13	31.000	0.590	337-02	1.071	1.073	-C.24	3.5460	0.26039E-0	0.26016E-03	9.139
14	34.000	0.652	515-02	1.135	1.126	0.80	3.5480	0.26015E-0	0.260885-03	9.086
15	36.000	C.695	327-02	1.171	1.160	0.96	3.5500	0.26000E-0	0.260835-03	5. 050
16	38,000	0.740	22	1.196	1.193	C.22	3.5530	0.25984E-0	0.26002E-03	9.014
17	40.000	0.783	927-02	1.228	1.224	0.30	3.5550	0.259698-0	0.259932-03	8.976
18	50.000	0.100	712-01	1.361	1.362	-C.06	3.5650	0.25858E-0	0.25894E-03	8.776
19	60.000	0.173	655-01	1.464	1.477	-C.87	3.5740	0.25833E-0	0.257792-03	8.562
20	70-000	0.146	746-01	1.561	1.574	-0.94	3.5810	0.25773E-0	0.257268-03	8.337
21	86.000	0.170	C85-C1	1.645	1.€58	-C.75	3.5870	0.25717E-0	0.256805-03	8.106
	(I) BF	TA(I)	LCG BF	TAČI)	SIGMA(I)	K(I)	LCG	5 K(I) K()	I)/K(I+1)	
	1 0 44	565 (3	2.64	.850 (0.302F 01	C,4456E	C3 2.	64890	6.032	
	2 0.32	CIS 05	4.51	733	0.705F 03	0.7386	C2 1.	86842	4.747	
	3 0.51	21°C5	5.70	937	C.6€5∺ 05	0.15565	C2 1.	19205 ****	*****	
	THE NUMB	ER SF I	TERATION	IS = 5		SMIN = C.	7531£ C1			

NO POINTS ELIMINATIO

###*******THREE PARAMETER PRCGRAM USED*********

STABILITY CONSTANT OF CR3-DHIEA PUN 1 NOVEMPER 8 1972

		22	21	20	19	1 9	17	16	15	14	13	12	11	10	σ	ນ	4	σ	ო	4	(J	N		(1)	STR	FIN.	RAT		CRI	1 °C
ω N H	(1)	80	70	96	50	\$ C	35	36	34	د) سر	20	N N	2	20	18	16	14	12	11	10	n,	6	4		AIGH			ד ה ה ת ת ת	GEA	GAC
0.6 C.7 0.1	æ	.000	. 000	.000	.000	.000	.000	.000	.000	000	.000	.000	• 00 c	• 00C	000	.000	.000	.000	.000	.000	• 0000	.000	000	٧B					SE C	ID C
8253 6717 8155	ĘΤΔ(Ċ	c C	0	0	0	c	ດ	0	ດ	n	c)	റ	0	c	0	ပ ပ	C	0	0	0	0	n							ONC E:
0 0 3 7 0 3	1)	• 1 6 5	.141	.119	•963	.742	.655	• (58	•614	ר <u>ז</u> גי גי	4 F J	423	- 36 P	• 3 3 1	.253	.257	122	• 1 % č	.17.)	•15 <u>2</u>	121	100	• 6 0 2	ANIC	QUA.	יכרטי	() H H H H		1787	VTAN.
	5	4.5.5	745-1	145-	367-1	451	4 [= - 1	457-1	- 158	179-0	36:-:	427-1	75:-1	483-1	737-1		- :: : 2	(دُند – ا	273-0	11111	201-0	713-0	ດ ເຈົ້າ 1	< CC)	127-7	it.	с < В		LICV LICV	TICN.
ר	ה עי	C 1	C -	C 1	C 7	C 2	C 2	20	2	5	r) Nj	ru Fu	., U	; j	с. (а	N	с) L	ניו	(-) (-)	C :2	ŝ	ŝ	5	-	ية ب	"	" -	" "	- II 0 0	= 0
44 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1) 72	1.	1.			1.	1.	•	-			-	1.	ر. در	() •	ບ •	с, •	0	ں • د	0.0	0 • 5	ت •	0 • .	Z	-2650	200.0	0000	0501	.0301	560
000	-	63	551	673	571	423	354	л г. О л Г	015	5 2 2	505	ц , с. 1	2 S 7	904		ם ז <u>ו</u> מיזי	65 J	724	217	μ Ω	44	42	327	×F	002-000	0	č	ហាំ	- Ji	0
110 110	51 GP',	-	_	-	-		1.	-	-	-		1	-	ņ	0	C C	o	°.	0	0	c.	c	0	z	-)+60					
0 6 4	(1)	87R	.792	694	574	.427	394	0.95	• 3 2 2	263	136	127	049	094	•G34	969	-799	,721	6 A 3	é3e	547	443	325 5	CALC	-0.50		~	~ ~		
																									00005					ICN I O
0.682	Ä	-С . ВС		- C• 92	0.2	C.03	C.04	-C.77	- C • 2 F	ία Ψ	0.70	C. 41	3.77	0.00	20.0×	·0•0°	· C • C •	0.46	80	0.19	.C.54	·C 27	C•58	RRJP	- 04)		N X O			STS
	(1)	C		10	. –		•	7	U.	0	()		7	0	1.	.,,	•••	0.	0	÷	•.	7		~	₽S¢		SS II.	<u>x</u> 3 m 1		ENG
200		և • Մ	່.	ω •		ω • • π	ω • π	ω • •	ა • უ	3.51	ى • •	3.50	3-50	3.40	3.40	3.40	3.4	3.40	3.40	3.40	3 • 50	ພ • 5	ა • •	PŦ			ACIS		FRATE	L H D
102	103	l v c	600	0 B C	÷ E O	20	365	27C	23C	LBC	L 1. C	0 6 C	000	036	95C	056	32 C	920	960	97 C	0 ÷ C	310	780	-	R		ĩz	55		101
93412 95071 9741	K(I)	0.		0	0	0	0	0.	C • 2	0.	с. •	0.	0	0.	0.	0.	C•2	0.	0.	0.	0	0.	0.	Ŧ	(X)		MEIN	5		
	-	27162	25780	1084	1545	25583	5555	2601	26029	26054	26081	261C	26136	26155	26179	26196	26218	26241	26252	26265	26291	26320	26353	CA US					4 H	2
	K(I)						36-03	35-03	DE-03	- O	LE - 03	7E-03	5E-03	0 - 30	5E-03	0-30	8 E -03	LE-0	2E-03	0-30	(E-0)	00-00	38-03	SED			•••	•	· ·	•
5 • C7)/KC	0						0	÷	~	0	с С	0	3	9	3	с С	ω 	0		ω ~	а С	~				0	10150	0880	0000
*00	[+1)	7.20				2.5	261	2.5	2.25	0.260	0.26	0.26	2.25	0.26	0.26	0.26) - 26	0.26	0-261	26	0.26	0.26	0.26	KA				0		
		2120		101		1666	0026-	929E-	3865	OLLE-	171E-	1648	2525	1556	1822	181E-	200E-	3365	0825	3085	1622	2492	519E	THE						
		ر د د	20				-03	- 03	-03	-03	-03	-03	-03	-03	-03	-03	-03	-03	60-	-03	-03	-03	-03	U						
		~	~		- -	r																.^	.0	VOL						
		• F 0 •	4.00	040	00	064	201.6	9.140	9.175	1.226	1.275	3.317	3.356	386.6	9.400	-41	-429	.43	9.441	.440	-43	.425	.402	KNC						
		-				-		-	÷	-				-	-	1								ີ້ເມື						•

NO POINTS ELIMINATED

THE NUMBER OF ITERATIONS =

SMIN = 0.1828E C/

ıл

********THREE PARAMETER PRCGEAM LSED#*******

STABILITY CENSTANT 75 F03-MHIDA BUY 1+2 JUNE 28 1972

		_	3	נ. וע גרונ	1 La 2 La	12	31	30	20	28	14	30	о љ л ‡		22	21	20	61	18	17	16	5	- ;	 	5:	= 2	- - -	5 02	1	6	თ	4	م س	v F	-	3	STRA	RATI	EU FF	
3 V P	-	-	50	n 4	4 4 n U	ŝ	40.	35,	ل د. ۱۳	зc.	30.			20	2.4	12.	12.	1 C.	1 C .	°.	<u>.</u>	10 /		-1 -	<u>-</u>	- 1	r v	۰y	۰ ۲ ۲	4.	 :	u		- :	-	ŗ.	LIGHT	, C	÷.	PACI
0.13	c,		0000				2000	000	000	200	000				000	000	000	000	000	000	000	000							000	000	000	000	000		66.0	' 0		7+F	ALT	
7 6 9 6 7 6 9 6	1	7 / 1		0		· •	•	•	•••	?	<u>.</u>	•••				•••	c.	c.	<u>.</u>	0	•	0	Ċ			л (ي ر •		ວ •	.	с .			5	57			CONS.	コンフロフロション
40.9	-	-	20857		0 1 2 3 1 2 3		1.5.5.1	05EE1	13890	11/15	1625	10732	- 2 2 1 2		04250	36572	1-9-1	1240	1021	27645	1610	t befo	4073	0630	0657	7374	14224	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6821	1232	6 3 A E S	SUCE	66220	5835	26179	102				RATI
			1.2-				-01	C 1	c 1	:-c1	C I		1		20-1	20-1	1-02	5 - C 2	2-02	20-1	-02	103	102	-02		100	4 1 2	100		20-52	5 - C 7	; - C 3	-C3		f - C - A	007	7-4=	V D 11	n	анн 99
54/86 5514/86									_	_	_	·		~ ~			-	-		_			r	c		0.4	·	- ·		0	0	0	~ 1	<u> </u>	2	,	0.26	1.00	0.04	0.00
C III II		2	-122	127	070		1 1	209	205	. PC1	. 7 95	747	754	777			232		122	.044	- 34 0	521	0.76		0.00	÷ • • •		100	10	.622	. 507	- 506	378	225	274	- i X E	100	000	C 9 2	4 4
0.19 0.19		-																													~	_	-	_	~		-03+1			
277 04 777 04		44 (1)	2.113	2.113	2054	1.050	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1.909	1.903	1.914	1. 71 =	1 772	1.771	1.725	10.10	20	1.219	1.1.37	1-1-04	1.044	1-043	C.572	C. c 74	2.807	10 E		1		200	0-624	0.512	215°C	185.3		C-222	CALO	(-0.6			
			-				-		-	•				-		-	-					-			-							-					0000	CONC	CCNC	
0-1-5 0-1-5		ž	0.43	6	0.7			-0.20		-0.74	-1.07	-1.44	-				1.00	0.2	1.63	-0.01	C•23	0.490	2.27	ບ ຫ	C.26					-C. 30	-0-37	-1.24	-0-71	1.3		€R4Ca	5-041	. EXC	ຊ	SSIUN NUISS
		3		-		γ 11				•	7	•	~ •	• •			. 0	~	ω.	-	5	Ű	7	-	0.					. 0	~	•	-	~		~	CS+	E S S	L3K	
200	,		3.49	349	ω. • • •		2.40	3.47	3-47	3.45	3.46	3.45		1 L 4 4 7 4	1 U 4 4 7 4 7 4	39 39	3.39	3.33	3.38	3.39	3.38	3.38	3.33	3.37	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.38	ן נ ה ה ה	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ט ע • ע • ע	9 9 9 9 9	3.42	3.42	3.47	3 5 9	9 • •	1 L		ACIU		
1.4	, ,	5	45	ω	76	1	- C	20	20	16	22	78	72	200		4 0	62	с Р Р	<i>6</i> 1	უ უ	50	05	18	1) 1)	ĉ	6		טית ספר	נית	67	15	20	18	ŝ	.0 B		RT	Ĩ	CZ S	
2436 2436		ĉ	0.2	0.2	0			20		0.2	0.25	0.25	0.25			0.2	0.20	0.20	0.20	0.20	0.20	C-20	C • 26	0-20	0.20	0 S	0.20			-20	C. 20	0.20	0.20	0.20	0-26	Z,	(X)	HE AL		01.0
<u>*</u>		Ā	56330	56336	56832	262312	17151	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1936	58536	36385	6792	5 8 7 9 E	59056		1275	51278	51656	51665	51856	51958	52068	52068	52276	52270	52506	5249E	1.1.1	352360	16623	5326E	5326E	53586	39 PE	98585	LSE		"	ŧ	م ۱۱۱۱
ະ ຈັບເບ	n		103	103	1					-03	-03	103					03	20	-03	1 0 9	03	03	1 0 0	-03	04	1 0 3		2.0		3 0	03	-03	-03	1 0 0	-0.0	0		0.0	0.10	2.00
# 8C6	1	×(1+	0	.	•	0				•••	0.	•	•	0		•) c		•	0	•	ن •	•	•	•	•	0			•	•	0	•	•	0	_			209	01
		Ξ	25650	2566	25726	25722	25662			25792	25765	25753	25794	25808			50254	26216	2647	26181	26231	26402	26264	26340	58295	26294	59066	26190	26163	20202	26009	2592	26100	19692	25863	A TH				
			5 -	31-03	36-03						10-03	32-03	- - -	-0-1 1 1 1 1 1 1					06-03	19-03	1 0 3	60-32	+E-03	15-03	€-03	•m - 03	9 H H				3E-03	18-03	E-03	19-03	5C-35	120				
			ل ى	-	-				-	-				- •		-	-	-						-		-				Ĩ		-	-	-	-	ç				
			5.6	5-60	5.8	5.84				6.30	ŕ.30	£.4	6.4	6.4		- 0 - 1 - 1	. o	6.9		6.9	6.9	6.9	6.02	6.9	6.9	••••	6.0	9	9	0.9	6.9	6.9	6.80	6.80	6.80	<u>ר</u> אי				
			ŝ	ű	ι.	س	00	3ů	ວັບ		÷	27	6	ŏ	⊒(ដីប៊ី	n U	10	2.0	4	14	4	5	32	ű	37	30		3,5	54	9	0	9	ώ	5	VC 3				

NO POINTS SCHULASTES

.

THE NUMPER OF ITERATIONS =

ιu

.

********FOUR PARAMETER "ROCRAM USED********

STABILITY CONSTANT C= ND3-CHIEA FUN 1+2 JULY 15 1972

		34	ų	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	1 5	14	5	12	=	10	9	8	~ (•	Jn J		u r.	۔	-	3	STR	RAT	E C	GRI	CR I
からこて	Ξ	5 C	50	45	40	40	ы S	35	30	Э Е	2 e	26	26	24	24	22	22	20	20	19	19	18	1 e	16	14		12			<u>,</u>	л.		• • •	n .e			AIGH	10	רוו החור ג ג	0,07	GAC
C. 522 0.140 0.232	8LT	.000	,000	1000	.000	.000	.00C	-00C	.000	.0000	.000	.000	.000	:000	. 000	0000	: 000	0000	,000	,000	000	.000	0000	000	000		.000	.000	0000		000				2	18					10 00
	1:17	C.2C7C6	J-2C715	C.18416	C-16090	C. LECRE	C.13777	0.13745	C.1145P	C.11490	C.10592	C. 57160	0.57114	0.92276	5523£ •0	0.75572	0.75554	C.71056	C.71040	C.6693c	0.663999	0.62770	0.62645	C.54469	0.46332	C. 463C4	0.36566	C-386C4	E 3 5 C E • J	6.77267	0.23786	1 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 7 7 4 2		0 10033	en Ic v	FCLATIC	VKCH TO		CENTRAT I	JCENTRATI
	ונפי	- c 1	:-C1	ž – C 1	÷-01	10-1	<u>- C1</u>	2-C1	10-01	12-1	7-01	2 3 - 1	02	2 - C 2	7-02	₹-C2	02	20-2	1-02	50-52	€-02	- 0.2	1-02	2 - C 2	102	- - - - - -	1-02	C2	12-02	1100	1 1 2 2	201				CCN	- Y =	v P	11 1	2	5
16402 14702 63677 65677	aita(I)	2.223	2.218	2.125	2.046	2.048	1.961	1.577	1.860	1.964	1.817	1.759	1.762	1.7C9	1.703	1.549	1.649	1.579	1.580	1.540	1.540	1.453	1.505	1.420	1.333	1.335	1.228	1.226	1.114	1	0_91				N	N EXF	0.26500F	1.00000	0.04742	0.04982	0.09731
C., R447 01 C., 1507 04 J. 223F 06 C., 7C4~ 07	SIGMA(I)	2.210	2.211	2.141	2.060	2.060	1.563	1.966	1.960	1.960	1.811	1.760	1.760	1-704	1.704	1-643	1.(43	1.577	1.577	1.542	1.542	i.505	1.504	1.424	1.334	1.333	1.232	1.233	1.115	1_050	C 979	2.00			3C 4 7	N CALC	-03+(-0.60		-		
6.52242 6.15248 6.30828 6.53699	K(1)	0.55	C•33	-0.73	-0.70	-0.60	-C•34	C.55	-0.01	0.23	C • 3 3	-0.05	0.10	C.27	C. 34	C-33	C.40	2.14	12.0	-C.15	-C.15	-C.48	C.07	-0-32	-0.05	C-12	-0.35	-0.56	-0-05	- [-] -	0 24		0.00			ERROR	CCOE-C41*S	CNC. EXCES		CTASSIUN N	IGNIC STREN
03 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	507	3.5370	3.5372	3.5317	3.5242	3-5241	3.5150	3.5140	3.5040	3.5037	3.4987	3,4939	3.4937	3.4377	3.4876	3.4813	3.4812	3 4747	3.4746	3.4715	3.4715	3.4682	3.4673	3.4558	3.4505	3,4502	3.4418	3.4422	3.4320	2-12-16	3 4236	2.4205	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			PH	۵	S ACID IN	FTAL ICN	ITRATE CO	GTH DF SC
96492 18306 48879 72992	K(1)	0.256	0-2563	0.256	0.2573	0.257	0.257	0-2570	0.2585	0.2585	0.258	0.2590	0.2550	0.259	0.259	0.255	0.255	0.2594	0.259	C.260	0.260	0.260	0.260	0.260	C.26C	0.260	0.261	0.261	0.261	0-241	0-262	0.262	0.262		E 10 0	KA	TCXI	METAL		NC.	LUTION
*** 5 • 7 5 • 7 0 • 6	K(1)/K	17E-03	162-03	168-03	50-351	92-03	6E-03	75-03	57E-03	710-03	32E-03	EC-360	SE-03	162-03	36E-03	58-03	: 5E-03	4E-03	48-03	C9E-03	E0-360	25E-03	25E-03	57E-03	72E-03	52E-03	276-03	276-03	56E-03	868-03	- 7E - 03					JSED		- 0.0	- 0.101		- 0.100
₩0€₩ ₩0€₩	(1+1)	0-256672-03	0.25654E-03	0.25641E-03	0.25692E-03	0.256995-03	0.25770E-03	0-25837E-03	0.25856E-03	0.25876E-03	0.25912E-03	0.259042-03	0.259188-03	0.259635-03	0.255718-03	0.260012-03	0.26008E-03	0.260115-03	0.26013E-03	0.259918-03	0.25591E-03	0.25965E-03	0.260348-03	0.25C12E-03	0.26C84E-03	0.261092-03	0.26C685-03	0.260332-03	0.261562-03	E 0-261516-03	0.26259E-03				0 14 35 36 03	KA THEO			11	ŝ	0
		5.409	5.409	5.578	5.745	5.745	90e - 5	5.907	6.065	6.065	6.126	£.186	ۥ196	6.245	6.245	6.301	6.301	6.356	6.356	6. 382	6.382	6.408	6.407	6.456	6.500	6.500	6.540	6.540	6.572	6.585	6.595	C=000	6 60 6 F	100.001	1 6 6 1 1	VOL KNC3					

THE NUMBER OF ITTOATIONS = 10 NO POINTS LUTWINETED

•

≉≠≠≠≠≠≠≠≠≠≠тнкЕЕ РАкАмЕТЕК ¤ROGRAM USED±+≠≠≠≠≠≠

KNC3

ğ

0.267375-03 0.2573675-03 0.258965-03 0.262986-03 0.262986-03 0.2629875-03 0.262987-03 0.262987-03 0.262987-03 0.262987-03 0.261875-03 0.261875-03 0.261875-03 0.261875-03 0.261875-03 0.261875-03 0.251887-03 0.251887-03 0.259887-03 0.259887-03 0.259887-03 0.259887-03 0.259887-03 0.259887-03 0.259887-03 0.259887-03 0.259887-03 0.259887-03 0.259887-03 0.2599877-03 0.2599877-03 0.2599867-03 0.2599877-03 0.2599867-03 0.25998767-03 0.2599867-03 0.25998727-03 0.2599872-03 0.2599867-03 0.2599872-03 0.25 THEO ¥ /K[[+]] 0.1000 1.3565 2.00 0.10123 0.0 5 • 124 4 • 965 (I)¥ U SED ICNIC STRENGTH OF SOLUTION = PCTASSIUM NITRATE CCNC. = POLUME OF METAL ICN SOL. = CONC. OF METAL ICN SOL. = CCNC. EXCESS ACID IN METAL = ¥ 3.04725 2.33767 1.64173 X (1) RT(X) 106 $\begin{array}{c} \mathbf{3} \\ \mathbf{5} \\ \mathbf{$ Ŧ 5 C Z 1572 -041#SQ 0.1115E 0.2176E C.4383E Ξ ERROR ¥ 26 יטע -03+(-0-60CC0E (I) 4M5 I 010 1+2 0.4375 0.130f 0.166E z NU S 0.10045 0.64582 0.05083 0.04582 1.004582 1.004582 1.004502 0.265005 SM3-CHI BA 3.04725 5.38492 7.02665 A. GRIG ACID CENCENTRATICH. = 0 OPIG BASE CENCENTRATICN = 0 EUFFER ACID CENC. = 0 DUFFER SALT CENC. = 2 DUFFER SALT CENC. = 2 RATIO FF THE VECH TE VR = 1 FINAL SCLUTIEN VECLUME = 5 STRAIGHT LINE ECUATIEN-VR 0 i. C. 49526F-C3 C. 49526F-C3 C. 105526F-C3 C. 105526F-C3 C. 105526F-C3 C. 112875F-C2 C. 112875F-C2 C. 112875F-C2 C. 112875F-C2 C. 112875F-C2 C. 112875F-C2 C. 19825F-C2 C. 29937F-C2 C. 765945F-C2 C. 7659415-C2 ANTON CCN ÿ ů CCNSTANT 0.0 6 6 6 6ETA(1) 0.1115E (0.24265 (0.1063E (STABILITY 48 : ~ ~ ~ Ξ

8

0.335

£

35

~1

11

1118111085

b

 ω

ELIVINAT

NUPEEF 3

4 04 12:41

							0	I MINATED	INTS EL	NC PO	
				595E 02	MIN = 0.4	6		172R4710	efR J≓	THE NUM	
	424 755 8#8	* * * * * * *	05037 40451 66633 78812	C4 3. 03 2. 02 1.	C.1123E 0.2538E 0.4638E 0.6139E	.457E 01 .2547 04 .554E 06 .249E 08	5037 C 15488 0 12121 0 12533 0	лчлш • • • •	123F 04 2227 C8 116F 09	1 0.1 2 0.2 4 0.8	
	K(I+1)	×(1)/	3 K(I)	נסי	K(I)	SIGMA(I)	\$FTA(1)	רכנ א	FTA(I)	1) e	
5 504	0.25693E-03	:65E-03	0.256	3.5242	0.36.	2.984	2. R45	36CE-C1	C •19	50.000	43
5-675	0-257782-03	166-03	0-257	3.5157	0.74	2.76H	2.79P	10-2-01	C.17	45.000	42
5.843	0.25776:-03	6EE-03	122°0	3.5075	0.10	2.768	2.700	105555-01		45-000	<u>-</u> 5
5.843	0.257698-03	67E-03	0.257	3.5076	0.02	3.638	3638	9075-01	0.14	40.000	3 0
6.005	0.257775-03	123E-03	0.258	3.4980	-0.45	2.488	2.477	7457-01	0.12	35.000	ЗŖ
0-100	0+299110-03		0-250	0.448Z	-0-54	694°7	51 5 4 7 5 1 5 4 7	1005-11	C • 1 0	10.000	. 5
6.219	0.259065-03	C7E-03	0.259	3.4800	-0.01	5.2.5 66.2.0	5.7.5			30.000	:
6.219	0.25906E-03	C7E-03	0.259	3.4800	-0.01	2.239	2.239	5671-02	0.97	28.000	נו נ 4 ח
6.277	0.258548-03	132E-03	0.259	3.4752	-0.62	2.161	2.148	477E-C2	58.0	26.000	ູນ ເບີ
6.333	0.255382-03	60E-03	0.259	3,4681	-0.16	2.075	2.072	C 102F-C2	C• 81	24-000	2
6.386	0.25548E-03	87E-03	C.259	3.4614	- C+ 27	1.986	1.581	10301-02	c.73	22.000	8
6 387	0.259326-03	87E-03	0.259	3.4616	-0.38	1.987	1.975	0652-02	C.73	22.000	20
6.437	0-260425-03	178-03	C. 260	3,4530	0.16	1.890	1-843	9115-02	0.64	20.000	2 R
194.9	0+260506-03	31E-03	C.260	3.4490	0.12	1.940	1.842	C2-1265	0.40	15.000	26
6.462	0.25968E-03	31E-03	0.260	3.4500	-0-39	1.842	1.835	1277-02	0.61	15.000	25
6.485	0.25976E-03	466-03	0-260	3-4455	-0-42	1.7A9	1.789	2232-02	0.57	18.000	22
6.529	0-260926-03	78E-03	C-260	3-4356	0.03	1.680	1.681	4048-02	. 0.45	16.000	22
6.529	0-261105-03	78E-03	C. 260	3 4 3 5 4	0.18	1.680	1.693	38CE-C2	C.49	16.000	21
	0.261335-03	126-03	0.261	3.4255	6.11	1.562	1.563	9105-02	0.41	14.000	20
6.603	0.26153E-03	47E-03	0.261	3.4150	50 . 03	1.432	1.4.57	GP14-C2	0.41	14-000	61
6.602	0.26269E-03	47E-03	0.261	3.4138	C.56	1.430	1.438	5822-02	0.34	12.000	17
6.629	0.262236-03	946-03	0.261	3.404C	G-16	1.286	1.286	7305-02	C.27	10.000	16
6.639	E0-36116-03	P 5F - 03	0.261	3.4025	0.30	1.284	1.294	16.54E-C5	0.27	10.000	53
6.639	0-26179E-03	036-03	0.262	3.3957	-0.09	1.207	1-206	4445-02	0-24	5-000 5-000	-
6.645	0.263855-03	246-03	0.262	3.3940	0.57	1.119	1.126	1405-02	0.21	2000-S	52
6-644	0.262236-03	24E-03	0.262	3 3954	10.0-01	1.122	1.121	2176-02	0.21	8.000	Ξ
6.650	0-26101E-03	446-03	0.262	3.3938	-0-48	1.029	1.030	1178-02	0.19	1.000	10
6.648	0-263102-03	66E-03	0.262	3.3921	0-13	0.929	0.930	1468-02	0.15	000 - 3	פר
6.642	0.26C885-03	66E-03	0.262	3.3937	-0.55	0.531	C.926	2122-02	0.15	6-000	
6.643	0.26068E-03	896-03	0.262	3.3578	-0.62	0.823	818 O	23-2065	0-12	5-000	. .
210.0	0.26174E-03	13E-03	0.263	3.4025	-0.36	0.702	0.700	S51E-C3	0.56	4,000	۴
6.613	0.26437E-03	402-03	0-263	1021 1021	-0.27	0.702	0.700	8955-03	96.0	4.000	u r
6.612	0.26606E-03	406-03	0.263	3.4316	6.4.3	0.567	C.57C	2586-03	C.71	3-000	· ·
VOL KNC3	KA THEO	USED	×٩	рн	FRAOR	N CALC	2 727	בא כבא	87 I	40	-
				-						5	3
		-		u	CUE-041#SU	0141-0-600	100.00		NE BCUA	L SOLUT	STR
	104	= 0.10]	SOL.	TAL ICN	NC. EXCESS	88	0.C4582	TC VP =	E VKCH	D CF TH	RAT
	500	= 0.100 = 1.356	SOL-	TRATE CO	LUHE JE ME	6 PIC	0.05554 0.04982 0.04572	ATICN =	CCNC-	ACID C	PUFF
				572	GUST 14 19	UN 1+2 AU	I-CHIBA RI	IT CF EU3	CENSTAN	BILITY	ST

.

************FOUR PARAMETER PROGRAM USED*******

151

.

**********F3UR PARAMETER PROGRAM LSLD*********

STABILITY CONSTANT OF SD3-DHIPS NUd N NOVEMBER 20 1972

		4.550 4.859 2.875	02632 37035 58377 22520	C2 1.0 C2 1.0 C2 1.0	0.2346 0.2346 0.4828 0.1680	0.19475 C1 1967 04 1967 06 1968 08	12 63 2 3 5 6 7 10 7 6 3 10 7 6 3	ο • • • • Ω ~ (Π (Ω	0675 04 5047 06 2057 08	0.29	4 U N H
	+1.)	K(I)/K(I	K(I)	501	×(1)	SIGN4(1)	?;T∧(I)	רטפי	"T3(])	٩ م	(1
8.200	.226305-03	37703 U	0.2571.	3.5530	-0.37	-445	2.436	21701	0.17	8C.000	22
				5 - 534C	C • I ~	2.331	2.340	7533-01	0.14	76.000	21
			0.2003.	0.0140			2.210	3453-01	C•1.3	€C.000	20
010.6	-259105-03	0 50-31	0.2590	3.5610	0.10	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2.06.5	6034-02	55*0	5C.0CC	lc
6.2.9	259/7E-03		0.2597	3.5450	0.01	1.897	1.887	43002	0.76	40.000	1 9
6.263	-260122-03	03 0	0-25991	3.5410	C-18	1.946	1.849	3357-02	C.71	36°00C	17
9.325	260332-03	92-03 0	C.2600	3.537C	0.22	1.803	1.ªC7	313:-C2	C•67	36.000	16
9.367	•26C398-03	4E-03 0	0.2602'	3.533C	0.12	1.758	1.760	P€3:-C2	0.62	24.000	15
0.427	• 26017€-03	0E-03 0	0.25050	3.527C	-0.25	2.4686	1.682	3234-02	0.56	31.000	14
9.4R4	•26115€-03	76-03 0	0-2607	3.519C	C.27	2.405	1.609	70102	0.49	2 E. 00C	13
a.537	-26100E-03	5E-03 0	0.2610	3.5120	-0.03	615*1	1.517	ž 0 9 5 £	C•49	25.000	12
9.535	•26142 ₹ -03	42-03 0	0.2613	3.5040	C.04	420	1.421	17902	C•37	22.00C	11
9.613	• 261395-03	4E-03 0	0.26154	3.4990	-0.09	1,349	1.34P	1727-02	0.39	20.000	10
659.6	•26056E-03	5E-03 0	0.2617	3.4950	-0.62	1.274	l-266	3215-02	C • 2 9	18-000	Ĵ
9.660	•26210Ē−03	9E-03 0	0.2619:	3.4990	C.C6	1.188	1.18P	4058-02	0.25	16.000	¢
9.677	-26271E-03	1e-03 0	0.2622	3.4850	0-23	550°	1.C?7	6966-02	0.21	14.000	7
689.5	•26201€-03	4E-03 0	0.26244	3.4840	-0.18	0.095	C.663	1905-02	0.18	12.000	¢.
¢•692	-26234E-03	7E-03 0	0.2525	3 . 484C	-0-09	0.940	0.530	4642-02	C.16	11.000	თ
9.693	-262812-03	9E-03 0	0.2526	3.4650	0.05	3.882	EdH•O	7752-02	C.14	10.000	4
069.6	-263965-03	5ë-03 0	0.25290	3.4920	0.35	13.757	0.75c	23-7565	0.11	8.000	ω
9.677	-26378E-03	5E-03 0	0.2632:	3.5120	0.17	0.617	C.618	0221-03	C. FS	6.000	N
9.652	-26273E-03	72-03 0	0.2635	3.5550	-0,24	0.456	0.455	4602-03	0.56	4.000	H
VOL KNO3	KA THEU	SED	KA U	РН	RCKAE	N CALC	N. TXP	07 007	4 N 3	٧B	(1)
			T(X)	יא	COE-04)*SQ	-03+(0-600	0.25500L	T I C N - Y =		GHT LIN	STRAI
			; ; ; ; ;								
		0.02388		TAL ICN			0.05262	1) ::::::::::::::::::::::::::::::::::::		RSALT	
		4.00	= - TCS	TAL ICN		V 0	0.04337	н	CONC.	R ACIC	EU F F E
		1.3880	NC •	TRATE CCI	TASSIUM NI	FO	0.05262	ATICN =	DACENTR	BASE CO	CRIG
		0.1000	LUTICN =	TH DF SO	NIC STRENG	10	0.0629c	ATICY			

ND POINTS ELIVINATED

-1 + m

NUMBER OF ITARATIONS

n

ıt.

0.10675 04 0.25047 06 0.2297 07 0.20318 09

SVIN = 0.7131E C1

*********THREE PARAMETER PROGRAM USEC*******

STABILITY CONSTANT OF THE -DHIER RUN I

DRIG ACID CONCENTRATION	U	0.05675	ICNIC STRENGTH OF SOLUTION =	0.1000
ORIG EASE CONCENTRATION	u	0.04683	POTASSIUM NITRATE CONC. =	I.5523
BUFFER ACID CONC.	II	0.04196	VCLUME OF METAL ION SOL. =	4.00
EUFFER SALT CONC.	u	0.C4893	CONC. DF METAL ICN SOL. =	0.05744
RATIO CF THE VKCH TC VE	u	1.00000	CCNC. EXCESS ACID IN WETAL *	0.0
FINAL SOLUTION VCLUME	н	100.00		

STRAIGHT LINE FGLETICN-Y= 0.26540E-03+(-0.14C70E-C3)*X

r	AIGFI LI											
1	V B	DINT	400 N	u Xiu Z	2	ALC	ម្មព្រុន	Нd	KA U	SED	KA THEO	VOL KNO3
1	2.000	C.2571	85E-C3	0.276	•0	275	C.19	3.4030	0.2653	6E-03	0.26722E-03	5.079
2	2.500	C 3 70	115-03	0.331	 	330	0.13	3.3585	0.2653	5E-03	0.26651E-03	5.105
1 (11)	3.000	0.4440	652-C3	0.382	.0.	3.84	-0.28	3.3275	0.2653	4E-03	0.26286E-03	5.129
4	6-000	0.519	885-03	C.666C		€59	C.26	3.2491	C.2652	7E-03	0.26717E-03	5.235
ŝ	7-000	0.110	C57-C2	0.741	۱ ٥	742	-0.09	3.2438	0.2652	56-03	0.26459E-03	5.261
9	8.000	0-120	445-02	C.817	7 C.	821	-0.59	3.2435	0.2652	26-03	0.26133E-03	5.284
~	9.000	C.1491	C 8 5 - C 2	0.851	ں. ر	894	-0.31	3.2439	0.2651	9E-03	0.26325E-03	5.301
a:	1 C - 000	C. 169'	57E-C2	C•962	ů S	564	-0.20	3.2470	0.2651	6E-03	0.26397E-03	5.315
Ø	10-500	0.175	796-62	566*0	.0.	ci 94	C. 50	3.247C	0.2651	5E-03	0.26802E-03	5.319
0	11-000	C.150	605-02	1.034	1.	027	0.70	3.2490	0.2651	3E-03	0.26901E-03	5.323
2	12-300	0.215	275-C2	1.053	3.1.	094	-C.16	3.2580	0.2651	0E-03	0.26428E-03	5.334
1	000-51	0.230	156-02	1.155	1.	1.54	C.06	3.2642	0.2650	6E-03	0.26534E-03	5.339
1 1	14-000	0.2654	416-02	1.210		214	-0-33	3.2730	0.2650	3E-03	0.26348E-03	5.343
4	15.000	0.289	94E-C2	1.271	۱ ۱	265	0.48	3.2780	0.2649	9E-03	0.26717E-03	5.340
5	17-500	6-362	505-02	1.351	l. 1.	395	-0.32	3.3010	0.2649	9E-03	0.26363E-03	5.334
9	22-500	0.521	20E-02	1.555	.1.	606	-C.48	3.3408	0.2646	7E-03	0.26313E-03	5.286
	25.000	0.603.	46E-C2	1.657	7 1.	.690	0.37	3.3560	0.2645	5 E -03	0.26563E-03	5.248
8	27.500	0 6 53	786-02	1.774	. I.	769	0.26	3.3730	0.2644	2E-03	0.26510E-03	5.205
0	30-000	C . 7561	e5≅-C2	1.845	- I -	839	0.29	3.3882	0.2642	9E-03	0.26458E-03	5.157
0	35-000	0.587	565-02	1.545	1.	962	-C.67	3.4175	C.2640	1E-03	0.262655-03	5.051
5	45-000	0-139	E2E-C1	2.140	5	140	-0-01	3.457C	0.2634	3E-03	0.26341E-03	4.803
N	50.000	0.161	425-01	2.20	2,	205	0.01	3.473C	0.2631	3 E -03	0.26314E-03	4.670
	(I) B	ETA(I)	LCC BE	TA(I)	SIGMA	(1)	K(I)	rcc	K(I)	. K (I) /K	(1+1)	
	1 0.1	CE4E 04	3.03	505	C.435F	01	C.1C845	C4 3.	03505	4.4	34 35	
	2 0•2 3 0•1	621E CE 131F CB	7.05	045 020	C.2775	- C - F	0.4314E	02 1.	63484	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\ \	

SMIN = 0.5171E 02

4

THE NUMBER OF ITERATICHS = NO PDINTS &LIMINATED

#######EJUK PARAMETER PROGRAM USED#######

STABILITY CONSTANT OF DY3-DHIBA PUV 1 DOTCREP 19 1972

	EGNX TOA	0.456	9.456	9.524	9.540	9.541	9.545	9.546	6°547	9.550	9.545	9.546	654 6	9.518	9.518	6 •501	9.467	9.467	9.427	9.382	585.4	9•332	9.298	9.298	9.262	9-226	122.6	120.6			8.587	202 D	8.347						
00	KA THEO	0.264305+03	0.26429E-03	0.26264E-03	0.26341E-03	0.26186E-03	0.26304E-03	0.26158E-03	0.26459E-03	0.26C79E-03	0.261556-03	0.26040E-03	0.26373E-03	0.26335E-03	C. 26335E-03	C-26140E-03	0.26076E-03	0.26076E-03	0.26C85E-03	0.26139E-03	0-26055E-03	0.26144E-03	0.26149E-03	0.261495-03	0.26134E-03	0.25545E-03		0-360062-03		0 256255-03	C0-319835-0		0.25822E-03	(1+1)	36	23	37		
N = 0.100 = 1.888 = 4.008 = 0.101 = 0.0	A USED	6371E-03	6371E-03	6316E-03	6292E-03	6291E-03	6290E-03	6280E-03	6269E-03	6246E-03	6225E-03	6225E-03	62055-03	6186E-03	6186E-03	6166E-03	6137E-03	6137E-03	6111E-03	6085E-03	6085E-03	6061E-03	6045E-03	60455-03	6029E-03	6013E-03		54546-U3		50155705 5016573	58155-03		5758E-03	X(I)/K	4.6	5.3	2 4		
3LUTIC CNC. SOL. SOL. N META RT(X)	¥	0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0•2	0.2	0.0	0.0	0.2	0.2	0.2	0.2	0.2	0.2	0•2	0.2	0.2	0.5	0.2	0.0	0.0							0.2	3 K(I)	.06623	40001	61395	201:22.	
H OF S AL ICN AL ICN ACID I	Hd	3 5110	3.5110	3.4330	3.4220	3.4230	3.4200	3.4210	3.41 BC	3.4220	3.4250	3.4260	3.4280	3.4340	3.4340	3.4420	3.4520	3.4520	3.461C	3.4690	3.4700	3.477C	3.4820	3.4820	3.487C	0454 6		3.51.60		1767.0 E	20222.5		3.5530	Ľů,	4	з S		-	€1E 02
NIC STRENGT TASSIUM NIT TASSIUM NIT ILUME DF MET FLUME DF MET ILUME CF MET NC. EXCESS COE-041#50	ERROR	6 L O	0.12	- C. 13	0.14	- C. 29	0.07	-0-35	C.57	-0.55	-0-25	-0.65	0.63	C.61	C.61	- C. 11	-0.29	-0.29	-0-13	030	-0.17	C* 50	9.65	C. 65	0.69	-0.46							0.79	K(1)	0.11655 0	0.25125 0	C.4720E C	C. 14315 U	MIN = 0.67
PCC CC CC CC CC CC CC CC CC CC CC CC CC	N CALC	212	0-415	0.698	C.816	0.818	C.872	C.973	0.423	1.025	1.115	1.116	1.195	1.272	1.272	1.346	1.444	1 • 4 4 4	1.532	1.611	1.613	1.684	1.730	1.730	1.774	1.919	078-1	500.2	721.7		2 2 7 8		2.390	51 GMA(1)	.341F 01	.352F 04	.7585 06	• 3 LIE UN	s
. C3210 . C43P2 . C43P2 . C4328 . 045B2 . 045B2 . 045B2 . 265005 . 265005	NEXP	0 415	0-415	0.657	0.817	0.815	0.872	C. 87C	C. 528	1.020	1.12	1.109	1.202	1.280	1.280	1.344	1.440	1.44C	1.53C	1.616	1.610	1.653	1.741	1.741	1.786	1.810	1.002			071.7	20202		2.408	TA(I)	623 O	621 C	025 0	0 HZ	s = 5
	CCP.	65-03	51-03	12-03	7F-C2	1E-C2	6F-C2	13E-C2	0F-C2	115-02	5E-C2	35-02	55-02	65-C2	6E-C2	45-02	: E E - C Z	8E-C2	6 E - C 2	65-C2	1£-02	2E-C2	16-02	15-02	5E-02	25-02	71-17	20-12		1.			65-01	LCG P5	3.06	5.46	7.14	~~ .	HOLLESS
CENTRAT CENTRAT CENTRAT CNC. VKCH TC VKCH TC VCHUW	ADI NA	2047 0	0.4595	0649.0	C.1205	0.1205	0.1344	0.1348	0.1482	0.1790	0.2057	0-2103	C • 5405	C.2745	0.2745	0.3105	C.3645	0.3645	C.4206	0.4772	C.4784	0.5257	0.5753	0.5753	0.6156	C.660C	0.661.0	00100		1,01.0			0.1530	4(1)	51 C4	67 C6	12 68	50	ר אר א
ASE CON ASE CON ACIT C SALT C SALT C SALT C SALT C SCLUTIC	٩	000	- 000	3.000	.000	2000-2	000-1	1.000	000.	.000	• 000	• 000	3.000	000	000	• 000	000	5.00C	9.000	1.000	• 000	000.	000	000	000			0.00					0:0	EET	0.116	0.252	0.138	0.267	NJMEE
CRIG A ORIG EL EUFFER BUFFER Ratio (Final	(1)	-			4	5	6 1.	7 1	8 1.	-1 6	10	1	12 11	13 2(14 20	15 23	16 21	17 2!	18 2(19	20 31	21 3.	22 3(23 3(24 31	52 52	4	22	2 2 2 2	57			33 8(Ξ	1	2	μ,	3	1-1

.

NC POINTS ELIWINETED

*********FOUR PARAMETER PROGRAM USED*********

STABILITY CONSTANT OF HOR-DHIPA FUN 2 NOVEMBER 22 1972

ORIG ACID CONCENTRATION =	0.09599	ICNIC STRENGTH CF :	SOLUTION	= 0.	1000
CPIG EASE CONCENTRATION =	0.05262	POTASSIUM NITRATE	CONC.	= 1.	8880
BUFFER ACID CONC. =	0.04337	VOLUME OF METAL IC	N SOL.	= 4.	00
EUFFER SALT CONC. =	0.05262	CONC. OF METAL IC	N SCL.	= 0.	09840
RATIC OF THE VKOH TO VE =	1.0000	CONC. EXCESS ACID	IN METAL :	= 0.	0
FINAL SOLUTION VOLUME =	200.00				
STRAIGHT LINE EQUATION-Y=	J.26500"-03+(-0.6	SCCCOE-04) *SQ	RT(X)		
		•			

(1)	VB	ANION CON	N EXF	N CALC	ERPOR	РН	KA USED	KA THEO	VOL KNO3
1	2.000	0.237010	3 0.263	0.263	0.00	3.6410	0.264086-03	0.264092-03	9.447
2	4.000	0.466322-0	3 0.457	0.457	0.09	3.5040	0.26370E-03	0.26415%-03	9.509
3	6.000	C.7C9199-C	3 C.621	0.620	0.07	3.4530	0.263405-03	0.263718-03	9.550
4	8.000	0.971165-0	3 0.764	C.765	-0.15	3.4320	0.26313E-03	0.262515-03	9.577
5	10.000	0.125047-01	2 0.893	0.894	-0.09	3.4240	0.26288E-03	0.26253E-03	9.593
6	11.000	0.139725-0	2 C.552	C.953	-0.10	3.4230	0.262768-03	0.26239E-03	9.597
7	12.000	0.154748-0.	2 1.010	1.010	-0.00	3.4230	0.26264E-03	0.262635-03	9.598
8	14.000	0.18621E-C	2 1.116	1.116	0.04	3.4260	0.26241E-03	0.262548-03	9.597
9	16.000	0.219768-0.	2 1.210	1.213	-C.25	3.4320	0.26219E-03	0.261485-03	9.589
10	18.000	0.253505-0.	2 1.304	1.300	C.32	3.4370	0.26198E-03	0.262832-03	9.574
11	20.000	C.288685-C.	2 1.390	1.390	C.73	3.4430	0.26178E-03	0.263588-03	9.555
12	22.000	0.327973-0	2 1.454	1.460	-C.43	3.4530	0.26156E-03	0.260588-03	9.535
13	25.000	0.385215-0	2 1.560	1.562	-0.15	3.4630	0.26128E-03	0.26C96E-03	9.495
14	28.000	C.444832-C	2 1.654	1.655	-0.05	3.4730	0.26100E-03	0.260905-03	9.448
15	31.000	0.505695-0	2 1.742	1.738	0.24	3.4820	0.26073E-03	0.26115E-03	9.397
16	36.000	0.612157-0.	2 1.964	1.863	0.03	3.4970	C.26031E-03	0.260352-03	9.303
17	38.000	0.656556-0	2 1.904	1,910	-0.32	3.5030	C.26014E-03	0.259668-03	9.263
18	4C.00C	0.658712-0	2 1.955	1,951	0.23	3.5070	0.259988-03	0.26031E-03	9.221
19	5C.000	0.926445-0	2 2.127	2.139	-C.55	3.5300	0.25922E-03	0.25857E-03	9.001
20	6C.000	0.115698-0	1 2.288	2,287	C.04	3.5460	0.25855 E -03	0.258582-03	8.764
21	70.000	0.139569-0	1 2.407	2.413	-0.25	3.5600	0.25791E-03	0.25769E-03	8.516
22	80.000	0.163295-0	2.535	2,517	0.71	3.5700	0.25733E-03	0.25789E-03	8.260
	(I) BE	TA(I) LCG	BETA(I)	SIGMA(I)	K(I)	LOG	K(I) K(I)/	K(I+1)	
	1 0.12	998 04 3	.11361	0.4588 01	0.1299E	04 3.	11361 4.	655	
	2 0.36	255 06 5	.55934	C.273E 04	0.27918	03 2.	44572 4.	549	
	3 0.22	24.09 7.	. 34712	C.641F 05	0.61353	02 1.	76778 3.	798	
	4 0.35	921-09 8	• 55538	C.349# C8	C.1615	02 1.	20826 ******	** · · ·	
	THE NUME	ER OF ITSPAT	ICN5 = 4	,	SMIN = 0.	14452 02			

NC POINTS ELIMINATIO

USED###########
PRCGRAM
PARAMETER

.

STABILITY CONSTANT OF ER3-CHIRA RUN 1 NOVEMBER 28 1972

CR I G	ACID CCN	CENTEATION =	0°C5599	LI	NIC STRENC	3TH OF SOL	UTICN =	0.100	0	
CRIG	EASE CCN	CENTRATION =	0.C5252	5	ITASSIUM NI	TRATE CCN	íc. =	1.888	0	
EUFF	ER ACIC (- UNC.	0.04337	2>	LUME OF ME	ETAL ICN S	:01. =	4.00		
BUFF	ER SALT (= 	0.05262	5	INC. OF ME	ETAL ICN S	:01. =	0.105	46	
RATI	D CF TFE	VKCH TO VP =	1.00000	5	INC. EXCESS	S ACID IN	METAL =	0.0		
ANI	r scrutt	ENUDDA NO	200.00							
STRA	IGHT LINE	E 2QUATICN-Y=	0.265008-	03+[0-500	COE-04)*S(2 RT	(X)			
(1)	VB	ANICH CCN	N 7 XP	N CALC	FRROR	Hd	KA USI	ED	KA THED	
-	4,000	0-41458E-C3	0.462	C. 462	0.13	3.4720	0.26375	E-03	0.264605-03	
1	6.000	0.634095-03	0.625	0.629	-0.07	3.4180	0.26345	E-03	0.26312E-03	
1 (*	P.00C	C_P7C55-03	0.776	C., 776	-0.05	3.3550	0.26323	E-03	0.262965-03	
,					ì	0,000 0		с с 2 2	0 24 4055-03	

:	VB	ANICH	N D D	N EXP	N CALC	FRROF	Hd	KA USED	KA THEO	-	DL KNC3
-	4,000	0-4145	85-03	0.462	C. 462	0.13	3.4720	0.263755-0	3 0.264605-	03	9.443
1 N	6 .000	0.6340	91-C3	0.625	0.629	-0.07	3.4180	0.26345E-0	3 0.26312E-	03	9.493
n 1	P.000	C. P.7C5	5 <u>7</u> −03	0.776	C.776	-0.05	3.3550	0.26323E-0	3 0.262965-	03	9.527
• •	1 C. 000	0.1124	15-02	505°0	0.907	0.24	3.3860	0.26299E-0	3 0.26405E-	03	9.548
· ທ	11,000	0.1262	24-02	0.565	C., 570	-0.11	3.3660	0.26287E-0	3 0.26239E-	03	9.556
9	12.000	C.1404	01105	1.026	1.029	-0.29	3.3870	0.26275E-0	3 0.26156E-	03	9.561
~	14.000	0.1658	4 F - C 2	1.134	1.137	-0-31	3.3910	0.26253E-0	3 0.261386-	03	9.564
œ	16.000	C.2002	95-C2	1.237	1.234	C.19	3.3960	0.26231E-0	3 0.262965-	03	6 *559
σ	18,000	0.2337	4 F - C 2	1.324	1.327	-C.28	3.4050	0.2621CE-0	3 0.26123E-	03	9.550
10	20.000	0.2664	54-02	1.415	1.407	0.57	3.411C	0.26190E-0	3 0.263575-	03	9.533
	22.000	0.3022	25-C7	1.492	1.486	0.41	3.420C	0-26170E-0	3 0.262825-	03	9.514
: -	25.000	C-3588	27-02	1. 592	1.593	-0.09	3.4340	0.26141E-0	3 0.261205-	03	9.479
1.5	28-000	0.4166	58-02	1.687	1.688	-0.05	3.4460	0.26113E-0	3 0.261025-	03	9.436
14	21,000	0-4750	24-02	1.781	1.772	0.50	3.4560	0.26086E-0	3 0.26189E-	03	9.386
12	34.000	0.5383	65-02	1.950	1,652	-C.13	3.4680	0.26060E-0	3 0.260352-	03	9°334
16	36-300	0.5809	0E-C2	1.895	1.902	-0-34	3.4750	0.26 04 3E-0	3 0.25582E-	03	9 . 297
12	35.000	C-6231	47-02	1.542	1.947	-0.26	3.4810	0.26026E-0	3 0.25981E-	03	9.25A
18	40.000	C.6664	05-02	1.585	166'1	-0.34	3.4870	C.2601CE-0	3 0.25955E-	03	9.217
2	50.000	0.5981	55-02	2.172	2,181	-0-40	3.5120	0.25935E-0	3 0.25881È-	03	9.001
2	6 C. 000		501	2.340	2,332	0.37	3.5300	0.258676-0	3 0.25909E-	03	8.765
22	76-000	0-1351	15-01	2.461	2,460	0.01	3.5460	0.25EC3E-0	3 0.258042-	03	8.519
22	8 C. 000	0.1585	301	2.580	2,568	0.45	3.5580	0.25744E-0	3 0.25783E-	03	8 • 265
	(1) 8	ETA(I)	LCG 921	TA(I)	(I) ('h) IS	K(I)	50 1	K(I) K(I)/K(I+I)		
		479F C4	3.16	5.87 C	3.9220 0 1	0.1479E	C4 3•1	16587	4.565		
		7697 06	5-67	e35 C	355: 04	0.3225E	03 2.5	50852	4.587		
		C842 C8	7.48	605	0.101-07	0.6467E	02 1.6	1071	3.337		
	4 0.5	577F CS	E. 774	645 (C.546% C8	0.1938É	02 1.5	58741 ****	****		

SWIN = 0.20036 02

۲

THE NUMPER DE TIFEATIONS = no points aliminatio

********FOUR PARAMETER PROGRAM LSED********

STABILITY CONSTANT OF TM3-CHIPA RUN 1 NOVEMBER 10 1972

ORIG ACID CONCENTRATION ORIG BASE CONCENTRATION	# #	0.09359 0.05015	ICNIC S PCTASSI	STRENGT	H OF RATE	SCLUTION- CONC.	=	0.1000 1.8880
EUFFER ACID CONC. BUFFER SALT CONC.	"	0.C4344 0.05015	VOLUME CONC. C	OF MET. DF MET	AL IC AL IC	N SOL. N SOL.	8	4.00 0.05781
RATIO OF THE VKCH TO VE FINAL SCLUTICN VOLUME	8 8	1.CGC00 2C0.00	CCNC. S	EXCESS	ACID	IN METAL	=	0.0
STRAIGHT LINE EQUATION-Y	=	3.26500F-03+(-3.6	CCCOE-C	04)* SQ		RT(X)		

(1)	VB	ANICA	CCN	N FX	P N CALC	ERROR	РН	KA USED	KA THEC	VOL KNO3
1	2.000	c.2000	97-03	C.28	0.281	-0.13	3.6070	0.26415E-03	0.263185-03	9.466
2	4.000	0.3556	85-03	0.49	8 C.486	0.41	3.4590	0.263812-03	0.26638E-03	9.535
3	6.000	0.6070	52-03	0.66	C 0.661	-0.05	3.4040	0.26352E-03	3 0.26325E-03	9.583
4	8.000	C.834C	803	0.81	2 0.812	0.02	3.3800	0.26327E-03	0.26335E-03	9.614
5	10.000	C.1082	42-02	0.54	£ C∙948	-C.30	3.3720	0.26303E-03	0.26169E-03	9.634
6	11.00C	0.1213	05-02	1.00	7 1.011	-0.35	3.3710	0.262915-03	0.261422-03	9.640
7	12.000	C.1346	62-02	1.06	7 1.070	-C.24	3.3710	0.26280E-03	0.26183E-03	9.643
8	14.000	0.1622	22-02	1.18	2 1.178	C.32	3.3730	0.26258E-03	0.26378E-03	9.644
9	16.000	0.1924	88-02	1.28	0 1.281	-0.06	3.3800	0.26237E-03	0.26217E-03	9.640
10	16.000	0.2230	78-02	1.37	7 1.372	C.39	3.3860	0.26217E-03	0.26341E-03	9.628
11	20.000	0.2557	35-02	1,46	3 1.458	C.33	3.3940	0.26197E-03	8 0.26294E-03	9.613
12	22.000	0.2901	98-02	1.53	9 1.539	-0.04	3.4030	0.26177E-03	0.26166E-03	9.595
13	25.000	0.3421	9E-C2	1.65	2 1.649	C.26	3.4140	0.26149E-03	0.26213E-03	9.559
14	28.000	G.3975	45-02	1.74	9 1.750	-0.07	3.4260	0.261225-03	0.261065-03	9.518
15	31.000	0.4545	12-02	1.83	7 1.843	-0.33	3.4370	C.26095E-03	C.26027E-03	9.473
16	34.000	0.5103	45-02	1.93	3 1.926	0.35	3.4450	0.26C71E-03	0.261395-03	9.421
17	36.000	0.5507	7=-0?	1,98	C 1.982	-0.11	3.4520	0.26055E-03	0.26035E-03	9.387
18	38.000	C.5909	35-02	2.02	8 2.034	-0.28	3.4580	0.26039E-03	0.25989E-03	9.350
19	40.000	0.6305	5-02	2.08	0 2.083	-C.13	3.4630	0.26C24E-03	3 0.25001E-03	9.312
20	50.000	0.8389	67-02	2,28	7 2.305	-0.80	3.4970	0.25950E-03	0.258382-03	9.109
21	66.000	0.1048	2°-C1	2.49	3 2.486	C.25	3.5030	0.25886E-03	0.25916E-03	8.886
22	76.000	0.1268	35-01	2.64	4 2.644	0.01	3.5180	0.258248-03	0.258265-03	8.652
23	EC.000	C.1487	50-01	2.80	0 2.775	C.88	3.5290	0.25768E-03	0.258512-03	8.408
	(I) BET	A(I)	LCG	BatA(I)	SIGNA(I)	×(I)	LO	G K(1) K(1))/K(I+1)	
	1 0,165	76 04	3.	21937	C.693E 01	C.1657E	C4 3	•21937 d	• • 560	
	2 0.602	21 05	5.	77974	0.4711 04	0.3634Ë	03 2	.56037 5	5.396	
	3 0.405	51: C.8	7.	60801	0.132F 07	0.6734E	02 I	• 82827 I	•367	
	4 0.199	8= 10	ç.	30053	0.8568 08	C.4926E	02 1	•69252 ****	******	
	THE NUMBE	R CE IN	(RATI	CNS =	4	SMIN = C.	23365 02			

NE POINTS BUIMINATTE

. *
. *
٠
*
. *
*
2
5
סכ
_
20
2
<u>ج</u>
-
~
-
ž
õ
×
¥
÷
5
~
in
ň
Ŧ
- #
÷
÷
÷
÷
*
÷
*

STABILITY CONSTANT OF Y93-DHIEA FUN 1 DOTOPER 25 1972

	-	32	1	10	1	1 1	2	10	20	о г	5	21	22	21	02	19	18	17	15	15	14	13	12	11	10	9	8	7	¢	J1	4	ω	N	-	(1)	STR	FINA	PATI	BUFF		CRIC
\$ W N	11	80.	а с.	70.					л . С .			3	36	34.	ω4.	11.	28.	28.	25	22.	22.	2 C.	12.	16.	16.	14.	14.	12.	11.	1C.	ro •	¢.	4	4.	<	116+7	ř :c			RR A	ACI
0.184 0.465 0.465	136	000	000	000								0.00	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	0.0	8	CIVE	LUTIO	., 1-	ALT O		
	ALII	0.1.					- 1					0.5	0.5	0.50	0.50	0.44	C.30	C.35	0.33	C.2:	C+ 2 8	0.24	G.21	0.15	0.17	C.1.	C • 1	0.12	0.11	C.10	0.78	C.56	0.36	C.36	٩N	525	N VCL	VX DH	CNC.		
5, D 6 4,	ŗ	9049.	00242						0703.5	044	10447	6623	4137	6592-	96 5 9 E-	7887-	10747-	- 1625	3391 °	32282-	12585-	8045	1517F-	4582-	4985	5403	5406-	27775-	Heef-	· 35810	32275-	5972.	7403-	7405	וכא כו	TICN		TC VI		1	ÂTIC
11 11 12 12 11 12 12 11 12 12 11 12 12 11 11 11 11 111	, ғ. Э .	- Ċ 1	: _	Ę		2¢	, c	5 r 4 r	- 	, , ,	י י כ	Ċ2	-02	-0.2	ŝ	ŝ	-02	2	-02	-C2	-02	-c 2	-02	-02	- c 2	-02	-C 2	-02	-02	-02	÷;3	ໍ່ຜ	ά	ć3	7	-Y= 0	п	" "	۳ ن	י וו ט כ	
6 FL 9 CI 6 JR	TALI	ו3) N. •								P.1		۲. ۱.	1.9	1.7	1.7	1.6		I.5		1.3	1.2	1.2	:	1.1	1.0	1.0	د. ۹	с . е	0.6	0.4	C.4	z	.2650	200.0	.0000	.C4c8	.0426	.0925
	S	0	7	10) ü	50		3,	0.0		5	79	4 ເກ	86	8	10	26	3	43	ي. د	с Ц	л "С	78	P	Re	PC	86	771	13	57	22	53	94	94	χp	0E-0	ö	õ	7	τ.	
1135 1108 1108	[C M A (2.0		, r , f								1.5	5	1.3	1.8	1.9	1.7	1.7	1.6	1.5	1.5	1.4	1.3	1.2	1.2	1.1		1.0	1.0	C.9	с. 3	0.6	C.4	C.4	N CA	C-1+E					
000 477 4	1)	14	: 3	:5	33	30	- 0				D -	75	29	86 0	96	:	82	27	34	34	36	9	74	96	96	87	P7	81	19	56	12	0. 9	94	94	ſ	- 6000		202	202		10
0.70	÷	.									-0-	•	• •	. .	0.0	-0.0	-0.	C• 2	0.	-0.	-0.	0.	0.	J.			-0.	-0-	-0.	•	0	••	-0.0	-0.0	ERRO	OF-C		о.			
244 24 24 24 24 24 24 24 24 24 24 24 24	(11)		1 1	2			50	5,	ភិះ	20	"כל	6	ũ	ŏ	ŏ	č	2	27	10	2	. un	ě	8	Ē		5	5	2	3	3	4	22	2	2	R	\$J#S0		XCESS	2		TRENG
02204		0.04			4 L4 * 11 L4 4 L4			1.	3 4 6	3.47	3 4 7	3.46	α 45	а 45	3.45	3.43	3.42	3.42	3.41	3.40	3.40	3.39	3.38	3.37	3.3/	3.36	3.36	3.36	3.35	3.35	3 • 36	3.39	3.44	3.44	PT			ACIO	TAL I		
	LCG)	20	3 C		5				6.0	51	5	0	50	00	ĉ	60	70	60	20	00	10	00	C L	20	20	50	0	Ô	9 C	5C	70	10	êC	č	-	RT		ĩ	CZ SI		
3433 1687 1838	(1)	0.20	200	2.20					2012	- 24 - 24 - 24	22.0	0.26	0.26	0.26	0.26	C.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	XÞ	Ξ		METAL	-		JTION
ŧ	ž	1040-	10 32-						950.4	0246-	0245-	0408-	- 31 50	073E-	0738-	C 9 8 E -	12 SE-	125E-	153E-	181E-	181E-	201E-	222E-	242E-	2426-	26 36 7	263E-	286E-	297E-	3C8E-	332E-	3575-	385E-	3656-	L SEE			•	"	н : 	• •
* U U L * U U L * • • •	E)/K	ŭ) C	36	3 6		2 0		ġ		Ċ.	ġ	Ċ	ά	ġ	ς α	Ċ3	ġ	ġ	ġ	03	ن س	ġ	ġ.	ι G	ι u	ġ	ġ,	ġ	έĊ	ġ.	ė u	ġ	9 9	Ū			•	550.(100
4 4 4 4	[]+1]	0.00	2 C - C - C - C - C - C - C - C - C - C	2 C - C - C - C - C - C - C - C - C - C				202	0.25	0-25	0.25	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	J.26	0.26	XA				88	Ċ	50
		0402		1410-				0.0	9076-	9116-	911E-	0736-	211E-	0732-	C73E-	-258J	C972-	-3161	- 302E -	1476-	C46E-	221E-	3178-	2478-	2416-	- 3902	2056-	532E-	254E-	3712-	4088-	-3695	376E-	376E-	THEO						
		Ċ,	ŝ	30			Ś	; د س	Ċ,	с і ш	Ċ3	ġ	ċ ₩	ė s	Ο ³	-03 3	.03 3	-03	03	-03	-03	03	6.0	-03	ċ	-04	03	03	-C3	-03	-03	-03	-03	-03	J						
		•	• •	• a	• •	• •		•	0	9	9	•	°.	0	•	• •	9.	.6	9	9.	.9.	9.	· ?	۰.	• •		•	9.	•6	9.	.	• •	٩.	•6	VGL						
		100		021	1 2 2	200	840	780	086	295	295	334	371	408	408	460	508	805	550	194	588	607	622	633		638	638	636	632	624	603	570	520	520	KNC3						

•

THE NUMBER OF ITERNING -

ł

Ś₩IN = C.2833€ C2

NO POINTS ELEVINETED

8SI

********FJUR PARAMETER PRCGRAM USED*******

STAPILITY CONSTANT CF LU3-DFIPA RUN 1 OCTOPER 26 1972

0.265062E-03 0.265062E-03 0.26506E-03 0.26184E-03 0.26184E-03 0.264896E-03 0.264896E-03 0.264896E-03 0.26486E-03 0.26486E-03 0.266112E-03 0.266112E-03 0.266112E-03 0.266112E-03 0.26612E-03 0.26612E-03 0.266132E-03 0.266132E-03 0.266132E-03 0.266132E-03 0.266132E-03 0.265132E-03 0.25776E-03 0.2	33372-03 3031462-03 30324-03 30324-03 20982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 22982-03 209222-03 20922-03	0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26		SMIN = 0.125 0.125 0.125 0.139 0.126 0.125 0.155	SIG SIG SIG SIG SIG SIG SIG SIG SIG SIG	1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2013 1/2 2013 2014 1/2 2014 2014 1/2 2014 2014 1/2 2014 2014 1/2 2014 2014 1/2 2014 2014 1/2 <th></th> <th>11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 12.000 0 12.000 0 13.000 0 14.000 0 15.000 0 16.000 0 17.000 0 18.000 0 19.01566 0 10.5566 0 11.000 0 12.000 0 13.0156 0 14.000 0 15.000 0 11.000 0 12.000 0 13.000 0 14.000 0 15.000 0 16.000 0 17.000 0 18.000 0 19.000 0<th></th></th>		11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 11.000 0 12.000 0 12.000 0 13.000 0 14.000 0 15.000 0 16.000 0 17.000 0 18.000 0 19.01566 0 10.5566 0 11.000 0 12.000 0 13.0156 0 14.000 0 15.000 0 11.000 0 12.000 0 13.000 0 14.000 0 15.000 0 16.000 0 17.000 0 18.000 0 19.000 0 <th></th>	
0.26137E-03 0.26459E-C3 0.251622-03 0.251622-03	362E-03 362E-03 37E-03	0.26	3.4310 3.3710 3.3720 3.3480	-0.32 -0.14 -0.29	C.493 0.667 0.668 0.822	0.491 0.668 0.817	34322E-C3 52873E-C3 530555-C3 737655-C3	8.0000 C	****
KA THE9 0.26216E-03 0.26919E-03 0.26919E-03	USED 422E-03 422E-03 385E-03	0.26 0.26	рн 3.5960 3.5850	ERROR -0-22 0-54 0-20	N CALC C.282 0.291 0.491	N EXP 0.282 0.492	ANION CCN 170275-C3 169075-C3 341875-C3	4.0000 00000	· 3 ~ ~ (]
400	1 4 1 0 1 4 1 0 1 4 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RT(X)	TAL ICA ACID I	CTASSIUME OF HE CLUME OF HE CNC. F ME CNC. EXCESS	-03+(-0.60	0.04264 0.04264 0.04264 1.00000 200.00 200.00	ALATICK	PASE CONCE FR ACID CON FR SALT CON C DF THE VK L SCLUTION - IGHT LINE FI	CRIG PATIG STRA

.

**********=R
PARAMETER
PROGRAM
CSEC*********

STABILITY CONSTANT OF Y3-DHIDA RUNI+2 JUNE 14 1972

			7	сы С	20	31	30	29	28	27	26	25	24	23	22	12	20	61	18	17	ř	15	14	13	12	11	10	q	ß	~	σ	ر ا	P (۱ در	5	-	3	STR	PAT		CR I	n a T
ф Ш М н	3	ļ	2	40	ເມ ເກ	ŝ	30	30	2 e	28	26	2,5	25	24	24	22	22	20	2 C	18	18	16	14	14	12	12	S	8	-1	م		4	۰.		0	N		AIGH	10 0	ייוד גרויד גרוי	100	ה ה
0.113	L:Ju		2000	000	000	0000	.000	.000	000	000	000	000	000	000	0000	.000	0000	000	0000	000	0000	0000	200	0000	000	0000	0000	•00c	.0000	000	• 00 C	2000	000	- 000	2000	-00C	VB	T LING	11 -1 7 7 7	SALT (
0.2004	A(1)		6-1754	C.1526	C-1302	0.1295	C. 1084	C.1C35	C. 3579	0.9973	C.9115.	0.8717	C. 8657	0.8254	C. P249	C.7426	C.7409	0.6645	C.6625	C-581C	5 0 4 5 + O 5	C.5014	C.4266	C.4264	0.3536	C.354C	0.2477	C.2150	0.1548	0.1544	0.1257	0.3970	0.0990		C-4528	C.4515	AN 107	E COUATI	VACH TO		CENTRAT	CORVER AT
	LCC B	•	10+1	04-01	12-11	72-01	43-C1	2 4 - C 1	52-C2	35-02	48-02	63-02	55-05	20-36	18-02	PE-C2	35-62	73-62	2E-C2	20-36	52-02	25-05	12-02	15-02	42-02	53-05	CE-C2	9	71-02	3 1 1 1 2 2	20-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101	7	£ 0 − C 3	75-03	001	() / - / =	= F	11 I		172 "
0476 0730 0730	TA(I)	1	2-680	2.517	2.451	2.464	2.254	2 • 2 9 C	5.2.29	5:2:5	2.163	2.112	2.123	2.056	2.100	2.013	2.022	1.904	1.915	1.826	1.826	1.727	1.604	1.605	1.470	1.469	1.256	1.169	1.068	595.0		0-729	0-733	(55) (55)	0.439	6.439	ي ښ× E	0.3532.0	1.0000	3.04982	0.04082	0-13643
0.9178 01 0.416 34 0.478 36 0.434 39	SI GMA(I)		2.695	2.5PU	2.449	2.447	2.300	2.301	2.234	2.233	2.162	2.127	2.126	2.C35	2.085	2.005	2.003	1.922	1.919	1.824	1.R23	1.719	1.606	1.606	1.483	1.481	1.250	1.162	1.071	0.967	C.e54	C.734	C • 730	0-556	0.438	6°436	N CALC	-03+(-0.60	Ō	•••	. ت :	Π
0.1134ª C.2761ª J.53473 J.36547	K(1)		-0.55	-0.09	0.10	0.68	-0.25	-0.45	-0.20	-0.07	C-C5	-0.71	-0.11	C.54	J.71	0.40	6.96	-C.91	-0.21	0.12	0.17	C.50	-0.17	-0.07	- C . 7 0	-0.79	C.48	C. 60	-0.25	0.24	0.49	6 F C - C - C - C - C - C - C - C - C - C	C 42	-0-65	60.0	0.38	ERQJR	CCCE-041*S	CMC. EXCES		CTASSIUM N	TNTC STREN
04 02 02 1	5	,	3.4900	3.4806	3.4700	3.4652	3.4582	3.45 55	3 4525	3.4523	3.4460	3.4440	3.4430	3.4385	3.4382	3.4314	3.4304	3.4258	3.4245	3.4151	3.4150	3.4047	3.3957	3.3955	3.3860	3.3862	3.3678	3.3636	3.3632	3.3622	3.3661	3.3810	3-3782	1967-1	3.4555	3.4550	РН	n	S ACID I	ETAL ICN	ITRATE C	ATH DE S
.05476 .44112 .72814 .56327	6 *(1)		0.25	0.25	0.251	0.251	0-25	0.25	0-25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.26	C-26	0.26	C-26	0-26	0-26	0.26	0.26	0-26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0-26	0.26	0.26	×Þ	RT(X)	N METAL		DAC.	TIUTION
**** ****	K(1),		7055-03	759E-03	815E-03	816E-03	8758-03	8752-03	9018-03	901E-03	527E-03	9402-03	940E-03	955E-03	955E-03	60-3E-03	984E-03	011E-03	012E-03	043E-03	043E-03	C75E-03	1 C EE-03	10 PE-03	143E-03	143E-03	201E-03	222E-03	242E-03	264E-03	287E-03	3112-03	311E-03	237E-03	367E-03	367E-03	USEC		= 0.0			= 0.1
109 109 109	/*(]+])		0.256635-03	0.237515-03	0.25A25E-03	0-258802-03	0-258486-03	0.258272-03	3.268782-03	0-25893-03	0.25933E-03	0-25853E-03	0.25927E-03	0-26023E-03	0-26046E-03	0.26C38E-03	0.26115E-03	0.258792-03	0.259815-03	0.26061E-03	C.26069E-03	0.26161E-03	C.26076F-03	C.260945-03	C.25995t-03	0.25976E-03	0.263252-03	0-263865-03	0.261672-03	0.263406-03	0.264568-03	0.259802-03	0-26470E-03	0-256698-03	0.264096-03	0.265408-03	KA THED			6595 0	106	000
			5.959	e.13 6	6.309	6.309	6.476	6.477	6.541	6.541	t.604	6.635	6.635	6.665	6.664	6.724	6.723	6.781	6.781	6.934	6.834	6.883	6.929	6.929	6.968	6.968	7.009	7.017	7.023	7.022	7.017	7.008	7.007	066.9	6.961	196.3	VOL KNO3					

NE BEINTS LLWINET, E

SMIN = 0.51653 CZ

XI. APPENDIX C:

FORMATION CONSTANTS OF RARE-EARTH

 α , β -DIHYDROXY- β -METHYLISOBUTYRATE COMPLEXES

STABILITY CONSTANT OF LAB-DHMIPA RUN 1 FEBRUARY 15 1973

ORIG ACID CONCENTRATION	=	0.05780	IONIC	STRENG	TH OF	SOLUTION	=	0.1000
CRIG BASE CONCENTRATICH	=	0.05262	PCTASS	STUM NI	TRATE	CONC.	=	1.8880
EUFFER ACID CONC.	=	0.04518	VOLUME	F OF ME	TAL IC	N SOL.	=	4.00
BUFFER SALT CONC.	÷	0.05262	CCNC.	05 45	TAL IC	N SOL.	=	0.10061
RATIO OF THE VKCH TO VE	=	1.0000	CCNC.	EXCESS	ACID	IN METAL	=	0.0
FINAL SCLUTION VOLUME	=	200.00						
STRAIGHT LINE EQUATION-Y	=	0.305938-03+(-0.5	21575-	-C3)*X				

(1)	٧B	ÁNICN	CCN	N ~XP	N CALC	ERROR	PH	KA USED	ΚΑ ΤΗΕΟ	VOL KNO3
1	2.000	C.4258	53-03	0.144	0.143	C.19	3.7240	0.30571E-03	0.306092-03	9.343
z	6.000	G.1176	62-02	C.339	0.341	-C.7C	3.5540	0.305325-03	0.304075-03	9.359
3	8.000	0.1554	75-02	0.421	0.422	-0.28	3.5280	0.30512E-03	0.304655-03	9.356
4	11.000	6.2129	3F-02	0.535	852.0	1.24	3.5070	0.304822-03	0.306700-03	9.339
5	12.000	C.2331	502	0.566	C.562	C.78	3.5040	0.304718-03	0.305873-03	9.332
6	14.000	C.2747	EE-C2	0.622	0.625	-0.58	3.5010	0.30450E-03	0.303685-03.	9.316
7	16.000	C.3157	67-02	0.681	C.682	-0.24	3.4980	0.30428E-03	0.303973-03	9.294
8	18.000	0.3578	8F-C2	0.733	0.236	-0.34	3.4970	0.304068-03	0.30364E-03	9.270
9	20.000	C.4007	38-02	0.782	C.786	-0.48	3.4970	0.30384E-03	0.303265-03	9.243
10	22.00C	0.4435	1月-02	C.831	0.832	-0.10	3.4970	0.30362E-03	0.30350E-03	9.214
11	25.000	0.5088	C2-C2	0.898	C.895	0.29	3.4980	0.30328E-03	0.30359≣-03	9.166
12	28.000	0.5770	C3-02	0.950	0.56	-0.55	3.5010	0.302928-03	0.302362-03	9.116
13	31.000	C.ć429	5F-C2	1.015	1.008	C.64	3.5020	0.30258E-03	0.30319E-03	9.061
14	36.000	C.759C	62-65	1.090	1.091	-0.11	3.5070	0.30197E-03	0.30187E-03	8.965
15	38.000	C.8041	33-02	1.127	1.120	6.58	3.5080	0.30174E-03	0.30222E-03	8.924
16	40.000	0.8514	05-02	1.152	1.49	0.29	3.5100	0.30149E-03	0.301728-03	8.883
17	50.000	0.1090	35-01	1.269	1.277	-0.58	3.5190	0.300245-03	0.299842-03	8.001
18	60.000	0.1330	76-01	1.380	1.381	-C.07	3.5260	0.29899E-03	0.298958-03	8.438
19	70.000	C.1572	82-C1	1.432	1.469	C.87	3.5320	0.29773E-03	0.29822E-03	8.198
	(I) BET	TA(I)	LC0 83	(I)A [†]	SIGMA(I)	K(I)	L.C.9	к(I) К(I)	/K(I+1)	
	1 9.372	25F C1	2.57	113	0.1948 01	0.3725F	03 2.	57113 ć	• 226	
	2 0.222	298 05	4.34	802	0.6152 03	0.59835	02 1.	77689 6	•143	
	3 0.21	70- 06	5.33	654	0.642F C5	€.9739₹	01 0.	· 58853 ****	****	
	THE NUMB	EP CF IT	RATICN	S = 5		SMIN = 0.	1120E 02			

NC POINTS ELIMINATED

•

*********THREE PARA4ETER PRCGRAM USED********

AUGLST 18 1973 m NDE STABILITY CONSTANT CF CF3-DHWIRA

IONIC STRENGTH CF SCLUTION = 0.1000	POTASSIUM NITRATE CONC. = 1.51.00	VOLUME JE METAL ICN SOL. '= 4.00	CONC. JF YETAL ICN SOL. = 0.10539	CCNC. EXCESS ACID IN METAL = 0.0		3+{-0.52157E-031#X
CRIG ACIC CONCENTRATION = 0.03759	DRIG EASE CONCENTRATION = 0.05262	BUFFER ACIC CONC. = 0.04497	BUFFER SALT CCNC. = 0.05262	RATIO CF THE VKCH TC VP = 1.00000	FINAL SCLUTICN VCLUMF = 200.CO	STRAIGHT LINE EQUATION-Y= 0.30593E-0

VOL KN03 111.659 111.659 111.6599 111.7338 111.7334 111.7334 111.7334 111.6579 111.6579 111.6579 111.6579 111.6579 111.6579 111.6579 111.2593 111.2633 10.0359 0.30522E-03 0.305265-03 0.304605-03 0.304605-03 0.304655-03 0.304655-03 0.30388E-03 0.30388E-03 0.303388E-03 0.303388E-03 0.303388E-03 0.3033126-03 0.3033126-03 0.30571E-03 0.305762-03 0.30152E-03 0.30037E-03 0.29657E-03 KA THEO K(I)/K(I+1) 6 • 542 7 • 234 ****** 0.305755-03 0.305592-03 0.305255-03 0.305072-03 0.305072-03 0.304952-03 0.304895-03 0.304695-03 0.304695-03 0.30449E-03 0.30449E-03 0.30407E-03 0.30386E-03 0.30355E-03 0.30355E-03 0.30315E-03 0.30215E-03 0.30226E-03 C.30201E-03 0.30055E-03 0.29674E-03 KA USED 2.81346 1.59774 1.13834 K(I) L0G Нd 03 02 02 C.65CRE C.9548E C.1375E K(1) $\begin{array}{c} -0.01\\ 0.05\\ 0.05\\ 0.012\\ 0.012\\ 0.026\\ 0.012\\ 0.01$ ERROR C. 291 C. 291 C. 546 C. 546 C. 546 C. 546 C. 548 C. 678 C. 751 C. 751 C. 919 C. 918 C. 1.200 1.265 1.224 1.311 1.343 CALC L-503 L.770 SIGMA(I) C.748E 0.2725 0.327E z d×⇒ LCG 3RTA(I) 2.81346 4.81120 5.54554 z C. 33737%-C3 0.64741F-C3 0.1264157-C2 0.12615F-C2 C.1921CF-C2 C.20030F-02 C.27377-C2 0.237377-C2 0.237377-C2 C.355875-C2 C.355875-C2 C.355875-C2 C.355875-C2 C.355875-C2 C.355875-C2 C.35586-C2 C.35586778-C2 C.35586778-C2 C.3558677777777777777777777777777 0.176245-01 200 AN ICN C 23 C 63 C 63 9ETA(1) 0.65085 0.64745 0.85035 2.000 4.000 8.000 111.0000 111.0000 111.0000 111.0000 111.0000 111.0000 111.0000 111.0000 111.0000 111.0000 225.0000 225.0000 225.0000 336.0000 36.0000 86.0000 Š (1) (1) 846548710984694876

PCINTS ELIMINATED ÿ

01

0.1109E

'n VINS

ŝ

II

NUMBER OF ITFRATIONS

THE

H N M

NO POINTS ELIMINATED

ORIG ACID CONCENTRATION = 0.10164

0.304842-03

0.59302E-03

0.892535-03

C.120535-C2

0.153495-02

0.170918-02

0.158665-02

0.225045-02

2.000

4.000

6.000

E.00C

10.000

11.000

12.000

14.000

1

2

3

4

5

6

7

8

	140000	0.000	700 02	0.004	<u> </u>	<u> </u>	-0.20	2 2000	0.304	565-03	0.304096-03
9	16.000	0.262	1202	0.994	C.9	90	-0.20	3.3900	0.30-		0.304070 03
10	18.000	0.300	76%~62	1.066	1.0	62	C.41	3.3920	0.304	36E-U3	0.305246-03
11	20.000	0.341	515-02	1.123	1.1	25	-0.19	3.3970	0.304	15E-03	0.30377E-03
12	22.000	C. 381	285-02	1.185	1.1	80	C.46	3.4000	0.303	8942-03	0.30481E-03
13	25.000	0.444	545-02	1.260	1.2	58	C.21	3.4070	0.303	861E-03	0.303972-03
14	28,000	0.509	605-02	1.327	1.3	28	-0.08	3.4140	0.303	327E-03	0.30314E-03
15	31 000	0.575	116-02	1,391	1.3	90	G.07	3.4200	0.302	2938-03	0.30304E-03
16	34.000	0.642	195-02	1.447	1.4	47	0.05	3.4260	0.302	258E-03	0.30264E-03
17	34.000			1 481	1.4	82	-0.10	3-4300	0-302	348-03	0.30222E-03
11	30.000		115 62	1.611	1.5	14	-0.35	3.4340	0.302	210E-03	0-30166E-03
18	38.000	0.134	111-62	1.011	1	10	-0.55	5.4540	0.002		0.901002 03
19	50.000	0.101	55E-C1	1.674	1.6	83	-0,50	3,4530	0.300	103E-03	0.300132-03
	(1) 9	ETA(I)	LDG RP.	FA(I)	SIGMAI	1)	K(I)	LOG	к(I)	К(I)/ К	(1+1)
	1 0.6	0305 (3	2.55	567	0.234E	01	0.9030E	03 2.	95567	6.3	76
	2 0.1		5 10	270	0 0195	0.2	0.1416E	03 2.	15112	6.6	49
	2 0.1	2198. LO	2.100	517	0. 7107.		0.1410	0, 2,	22020		
	3 0.2	724F C7	£.43	517	0.116F	06	0.21305	02 1.	32838	*****	ተተ
	THE NUM	PER CE I	TERATION	5 = 5		s	MIN = 0.7	7105E 01			

0.28

-0.18

-0.35

0.03

0.29

0.03

-0.13

-0.19

= 1.5100 PCTASSIUM NITRATE CONC. GRIG BASE CONCENTRATION = 0.05262 VOLUME OF METAL ION SOL. = 4.00 BUFFER ACID CONC. = 0.04902 = 0.10012 CONC. OF METAL ION SOL. BUFFER SALT CONC. = 0.05262 CONC. EXCESS ACID IN METAL = 0.0 RATIO OF THE VKCH TO VB = 1.00000 FINAL SOLUTION VOLUME = 200.00 STRAIGHT LINE EQUATION-Y= 0.305935-03+(-0.52157E-03)*X KA THEO N EXP N CALC ERROR PH KA LSED ANIEN CON (1) VB

0.232

0.397

0.532

0.647

0.748

0.795

C.840

0.922

STABILITY CONSTANT OF FR3-DHMIPA RUN 3 JULY 17 1973

C.233

0.396

0.530

0.647

0.750

0.796

0.839

0.920

0.30577E-03

0.30562E-03

0.305468-03

0.30530E-03

0.30513E-03

0.30504E-03

0.304952-03

0.30476E-03

ICNIC STRENGTH OF SOLUTION = 0.1000

3.6100

3.4770

3.4260

3.4020

3.3910

3.3890

3.3880

3.3880

VOL KNG3

11.760

11.818

11.851

11.867

11.872

11.871

11.868

11.855

11.835

11.809

11.780

11.745

11.688

11.626

11.557

11.485

11.435

11.383

11.051

0.307C7E-03

0.30487E-03

0.30420E-03

0.305402-03

0.33598E-03

0.30511E-03

0.30460E-03

0.30428E-03

**********THREE PARAMETER PROGRAM USED*********

STABILITY CONSTANT OF ND3-DHNIBA RUN 2 AUGUST 18 1973

ICNIC STRENGTH OF SOLUTION = 0.1000 ORIG ACID CONCENTRATION = 0.09759 POTASSIUM NITRATE CONC. = 1.5100 ORIG EASE CONCENTRATION = 0.05262
 EUFFER ACID CONC.
 = 0.04497

 EUFFER SALT CONC.
 = 0.05262
 VOLUME OF METAL ICN SOL. = 4.00 CCNC. OF METAL ION SOL. = 0.10800 CONC. EXCESS ACID IN METAL = 0.0 RATIO OF THE VKCH TO VE = 1.00000 FINAL SOLUTION VOLUME = 200.00 STRAIGHT LINE EQUATION-Y= 0.305932-03+(-0.521572-03)*X

(1)	٧B	ANICN C	CN	NEX	P N CALC	ERROR	РН	κA	USED	KA THEO	VOL KNO3
1	2.000	0.259606	-03	0.23	6 0.236	-0.07	3.6140	0.305	579E-03	0.30536E-03	11.655
2	4.000	0.511268	-C3	0.40	6 0.405	0.20	3.4730	0.305	6662-03	0.30672E-03	11.727
3	6.000	C.77862F	-03	0.54	6 C.546	0.05	3.4200	0.305	528-03	0.305758-03	11.773
4	e.000	0.106495	-02	0.66	7 0.667	-0.06	3.3970	0.305	37E-03	0.30514Ë-03	11.801
5	10.000	0.137165	-02	0.77	3 C.174	-0.24	3.3880	0.305	521E-03	0.304302-03	11.815
6	11.000	0.153048	-02	0.82	2 0.323	-0.15	3.3860	0.305	513E-03	0.30462E-03	11.818
7	12.000	C. 1692.28	-02	0.86	5 C. 368	0.08	3.3850	0.305	5058-03	0.30531E-03	11.817
8	14.000	0.20347	-C2	0.55	3 C.954	-0.08	3.3870	0.304	87E-03	0.30461E-03	11.811
9	16.000	0.238606	-02	1.03	3 1.030	0.28	3.3900	0.304	69E-03	0.305472-03	11.797
10	18.000	C.27627E	- C2	1.10	c 1.101	-0.17	3.3960	0.304	498-03	0.304058-03	11.777
11	20.000	0.314098	- C 2	1.16	6 1.165	0.10	3.4010	0.304	29E-03	0.30454E-03	11.751
12	22.000	0.353578	- C 2	1.22	4 1.224	0.04	3.4070	0.304	+09E-03	0.30417E-03	11.721
13	25.000	0.414638	- c 2	1.30	3 1.304	-0.05	3.4160	0.303	8772-03	0.30367E-03	11.669
14	28,000	0.47679E	- C 2	1.37	8 1.374	0.23	3.4240	0.303	44E-03	0.30388E-03	11.609
15	31.000	C.54057F	- 02	1.44	3 1.438	0.30	3.4320	0.303	11E-03	0.303622-03	11.544
16	34.000	0.607215	-c2	1.45	8 1.497	0.09	3.4400	0.302	2765-03	0.30290E-03	11.474
17	38.000	0.657725	- C 2	1.56	3 1.567	-0.30	3.4500	0.302	29E-03	0.301852-03	11.375
18	40.000	C.74255E	- c 2	1.59	7 1.599	-0.10	3.4540	0.302	068-03	0.30192E-03	11.323
19	50,000	0.575005	-02	1.73	2 1.735	-0.18	3.4730	0.300)E4 E -03	0.30064E-03	11.048
20	70.000	0.145843	- C 1	1.92	1 1.932	-0.58	3.5010	0.298	32 E-0 3	0.29783E-03	10.448
	(I) BET	TA(I) L	.C G	BETA(I)	SIGMA(I)	К(І)	LOG	, κ(I)	K(I)/	(K(I+1)	
	1 0-108	2F C4	3.	03434	C.180E 01	0.1082E	C4 3.	03434	6.	505	
	2 0.180		5.	25542	C.730F 03	C.1664E	03 2.	22109	7.	079	
	3 0.423	32E C7	6.	62652	0.946E 05	0.23505	02 1.	37109	*****	***	
	THE NUMBE	ER OF ITER	2ATI:	0NS = D	4	SMIN = 0.	4252E C1				

STABILITY CENSTANT OF SM3-CHMIBA RUN 1 APRIL 11 1973

ORIG ACID CONCENTRATION	0 #	• C 5 6 4 7 I (CNIC STRENGTH OF SOLUTION =	0.1000
ORIG BASE CONCENTRATION	0 =	•05262 PI	DTASSIUM NITRATE CCNC. =	1.8880
BUFFER ACID CCNC.	0 #	•04385 VC	DLUME TF METAL ICN SOL. =	4.00
BUFFER SALT CONC.	0 =	•05262 CC	GNC. OF METAL ICN SOL. =	0.10060
RATIO CF THE VKCH TC VB	- +	• CODOO	GNC. EXCESS ACID IN METAL =	0.0
FINAL SOLUTION VCLUME	в	200-00		
STRAIGHT LINE EQUATION-Y	(= 0	.3C593F-03+(-0.52]	157E-C3)*X	

[1]	>	8,	ANION CCN	N E)	۲ ۲	N CALC	ERROR	Hd	KA USEI	0	KA THEO	VOL KND3
	4.	000	0.472345-C	3 C 4	59	0.459	-0.01	3.4630	0.30568E-	-03	0.30561E-03	9.487
2	ę.	000	0-3000810	3 0.6]	15	0,615	-0.07	3.4110	0.33555E-	-03	0.30516E-03	9.525
ŝ	ω	000	C. 1 CO 55F-C	5 C.71	47	0.748	-0.12	3.3900	0.30540E	-03	0.30486E-03	9.547
4	10.	000	0.13076É-C	2 C.96	64	0.362	0.26	3.3820	0.305255-	-03	0.30631E-03	9.555
ĥ	11.	000	0.14655F-C	2 0.91	15	0.915	00.0-	3.3820	0.30516E	-03	0.30515E-03	9.557
9	12.	000	C.162935-C	2 0.56	56	C,963	0.25	3.3820	0.305086-	-03	0.30598E-03	9.556
~	14.	000	0.19714E-C	2 1.0	55	1.054	0.12	3.3860	0.30490E-	-03	0.30529E-03	9.549
æ	16.	000	0.23313E-C	2 1.13	35	1.136	-0-04	3.3920	0.30471E-	-03	0.304595-03	9.535
σ	18.	000	0.276735-0	2 1.2(с1	1.209	-0.23	3.3550	0.30452E-	-03	0.30389E-03	9.517
10	20.	000	C.3C855E-C	2 1.2	77	1.275	0.17	3.4050	0.30432E-	-03	0.30476E-03	9.493
11	22.	000	C.34024F-C	2 1.33	33	1.337	-C.27	3.4130	0.30411E-	-03	0.30347E-03	9.467
12	25.	000	0.41154E-C	2 1.4	10	1.420	-0.45	3.4240	0.30378E-	-03	0.30241E-03	9.422
13	28.	000	0-474545-0	2 1.48	8¢	1.492	-0.36	3.4330	0.30345E-	-03	0.30276E-03	9.371
14	31.	000	C.53843E-C	2 1.55	5 8	1.556	0.12	3.4410	0.33312E-	-03	0.30334E-03	9.315
15	34.	000	C.6C583E-C	2 1.61	11	1.516	-C.26	3.4500	0.30277E-	-03	0.302345-03	9.256
16	36.	000	0-64745E-C	2 1.66	6 5 5	1.649	C•94	3.4530	0.30255E-	-03	0.304015-03	9.214
17	38.	000	0.652842-0	2 1.69	99	1.694	05.0	3.4580	0.30232E-	-03	0.30364E-03	9.172
18	4C.	000	0.742635-0	2 1.7]	10	1.719	-c.51	3.4650	0.30206E-	-03	0.30134E-03	9.131
19	50.	000	C.57284E-C	2 1.E	67	1.855	C.63	3.4830	0.30066E-	-03	0.301582-03	8.903
20	60.	000	0.12163F-C	1 1.55	5 E	1.967	-0.45	3.5000	0.295595-	-03	0.299145-03	8.664
21	70.	000	0.14615E-C	1 2.04	40	2.058	-0.89	3.5130	0.238306-	-03	0.297555-03	8.415
22	8C.	000	C.17035E-C	1 2.14	44	2.134	0.45	3.5220	0.29704E-	-03	0.257385-03	R.160
	(1)	BETA	(I) LCG	(I)VLI	IS	(I) WO]	K(I)	10C	K(I) K((I)/K((1+1	
	1	0.1353	E C4	.14402	J	357E 01	0.1353E	04 3.1	14402	6-63	5	
	~	0.2925	E 06	.46613	0	3C2E 04	C.2100E	C3 Z.3	32216	7.29	0	
	Ē	C. 8426	E C 7 6	.52562	່ວ	556E J6	0.28835	C2 1.4	+5944	8.67	4	
	4	0.2758	Е С.9. 7	•446F3	0.2	2645 08	0.33215	0.5	52121 ***	****	*	

SMIN = C.21045 C2

10

THE NUMBER OF ITERATIONS =

NO POINTS FLIMINATED

.

STABILITY CONSTANT OF EUG-DHMIBA RUN 2 AUGUST 5 1973

CRIG ACID CENCENTRATION = 0.10213ICNIC STRENGTH OF SOLUTION = 0.1000DRIG BASE CONCENTRATION = 0.05262PCTASSIUM NITRATE CONC. = 1.5100EUFFER ACID CONC. = 0.04951VOLUME OF METAL IGN SOL. = 4.00BUFFER SALT CENC. = 0.05262CCNC. CF METAL IGN SOL. = 0.10104RATIO CF THE VKOH TO VB = 1.0000CONC. EXCESS ACID IN METAL = 0.0STRAIGHT LINE ECUATION-Y= 0.30593E-03+(-0.52157E-C3)*X

(1)	VB	ANION	V CCN	N EXP	N CALC	ERROR	РН	KA U	SED	KA THEO	VOL KNO3
1	2.000	C.2426	64E-C3	0.277	C.277	0.01	3.5590	0.3058	0E-03	0.30585E-03	11.782
2	4.000	0.4755	532-03	0.477	0.477	-0.04	3.4120	0.3056	85-03	0.30543E-03	11.865
3	6.000	0.7198	6E-03	0.644	C.642	0.24	3.3540	0.3055	5E-03	0.30685E-03	11.918
4	8.000	0.9847	145-03	C.786	C.788	-0.16	3.3290	0.3054	2E-03	0.30463E-03	11.953
5	10.000	0.1266	3 8 -C2	0.913	C.914	-0.09	3.3180	0.3052	7E-03	0.30485E-03	11.971
6	11.000	0.1415	528-02	6.971	0.972	-0.15	3.3160	0.3051	9E-03	0.30456E-03	11.976
7	12.000	0.1566	59E-02	1.027	1.027	-0.01	3.3150	0.3051	1E-03	0.30509E-03	11.977
8	16.000	0.2223	115-02	1.219	1.218	C.12	3.3210	0.3047	7E-03	0.30517E-03	11.961
9	18.000	0.2577	/1E-C2	1.301	1.300	C.12	3.3270	0.3045	95-03	0.30497E-03	11.941
10	20.000	0.2547	74E-C2	1.375	1.374	C.05	3.3340	0.3043	9E-03	0.30453E-03	11.915
11	22.000	C.3328	256-62	1.443	1.441	0.12	3.3410	0.3041	9E-03	0.30453E-03	11.884
12	25.000	0.3925	SEE-C2	1.532	1.531	0.07	3.3520	0.3038	8 E -03	0.30406E-03	11.830
13	28.000	0.4550	002-02	1.608	1.611	-0.13	3.3630	0.3035	6E-03	0.30327E-03	11.768
14	31.000	0.5189	55E-C2	1.678	1.680	-0.15	3.3730	0.3032	2E-03	0.30293E-03	11.699
15	34.000	0.5840	6E-C2	1.742	1.742	-0.01	3.3820	0.3028	8E-03	0.30287E-03	11.625
16	36.000	0.6297	162-02	1.778	1.780	-0.09	3.3880	0.3026	5 E -03	0.30249E-03	11.574
17	38.000	0.6729	92E-02	1.818	1.814	0.19	3.3930	0.3024	2 E- 03	0.30272E-03	11.520
18	4C.00C	C.7196	4E-C2	1.844	1.848	-0.22	3.3990	0.3021	8E-03	0.30183E-03	11.467
19	50.000	0.9519	85-02	1.987	1.985	0.08	3.4210	0.3005	6E-03	0.301062-03	11.179
1	(1) BET	TA(1)	LCG BO	TA(I)	SIGMA(I)	K(I)	LDO	G K(I)	K(I)/K	(I+1)	
	1 0.134	42E C4	3.12	782 0	0.219F 01	0.1342E	04 3.	12782	4.4	80	
	2 0.402	218 06	5.60	438 0	.1C7E 04	C.2996E	03 2.	47656	7.5	21	
	3 0.160	02 E C8	7.20	467 0	0.155F 06	0.3984 E	02 1.	.60030	******	**	
	THE NUMBE	ER OF IT	TERATION	15 = 4		SMIN = 0.	3124E 01				

NO POINTS ELIMINATED

STABILITY CONSTANT OF GO3-DHMIBA RUN 1 APRIL 11 1973

ORI	G ACID CCN	CENTRAT	TIGN = 0	0.69647	10	CNIC STRENG	STH OF SOL	UTION = 0.10	00 ·	
ORI	G EASE CON	CENTRAI	TICN = 0	05262	P	DTASSIUM NI	TRATE COM	$1C_{-} = 1.88$	80	
BUF	FER ACID C	ONC.	= (0.04385	v	CLUME OF ME	TAL ICN S	OL. = 4.00		
EUF	FER SALT C	GNC.	= 0	0.05262	C	DNC. OF ME	TAL ICN S	50L = 0.08	388	
RAT	IO OF THE	VKCH TO) vB = 1		CC	INC. EXCESS	ACID IN	METAL = 0.0		
FIN	AL SOLUTIC	N VOLUS	1E =	200.00						
STR	AIGHT LINE	EQUATI	ICN-Y=0	.30593E-	03+(-0.52)	157E-03)*X				
(1)	VB	ANIEM	NCON	NEXP	N CALC	ERROR	рн	KA USED	KA THEO	VOL KNO3
1	2.000	C.2808	27E-C3	0.282	0.281	0.58	3.6410	0.30578E-03	0.308748-03	9.615
2	4.000	0.5571	75E-C3	C • 4 9 C	C.432	-0.34	3.5080	0.30564E-03	0.30413E-03	9.661
3	6.000	0.8538	E4E-C3	0.641	0.645	-0.70	3.4550	0.30549E-03	0.30276E-03	9.687
4	10.000	0.1437	73E-02	0.904	0.904	0.04	3.4280	0.30515E-03	0.30529E-03	9.698
5	11.000	C.1661	16E-C2	C.558	C•920	-0.19	3.4270	0.30506E-03	0.30450E-03	9.696
6	12.000	C.1839	98E-02	1.005	1.012	-0.35	3.4270	0.30497E-03	0.30399E-03	9.691
7	14.000	0.2195	59E-C2	1.110	1.105	0.46	3.4270	0.30478E-03	0.30596-03	9.676
8	16.000	0.2571	L3E-C2	1.198	1.189	C.75	3.4300	0.30459E-03	0.306352-03	9.656
9	18.000	C.256f	528-02	1.274	1.267	0.55	3.4350	0.30438E-03	0.30559E-03	9.632
10	20.000	0.3371	78E-C2	1.339	1.338	C.09	3.4410	0.30417E-03	0.30435E-03	9.604
11	22.000	0.3790	025-C2	1.404	1.401	0.23	3.4460	0.30395E-03	0.30439E-03	9.573
12	25.000	C.4430	01 F- 02	1.490	1.487	0.16	3.4540	0.30362E-03	0.30390E-03	9.521
13	28.000	C.5051	1 CE - C 2	1.562	1.564	-0.09	3.4620	0.30327E-03	0.30314E-03	9.465
14	31.000	0.5773	32E-02	1.622	1.633	-0.62	3.4700	0.30292E-03	0.30202E-03	9.406
15	34.000	0.6451	L8E-C2	1.679	1.694	-0,88	3.4770	0.30256E-03	0.30139E-03	9.343
16	36.00C	C.6904	41E-02	1.728	1.730	-0.12	3.4800	0.30233E-03	0.30217E-03	9.299
17	38.000	0.7368	35 E -C2	1.763	1.765	-0.14	3.4840	0.30209E-03	0.301918-03	9.254
18	40.000	C.784]	LCE-C2	1.793	1.799	-0.30	3.4880	0.30184E-03	0.30149E-03	9.209
19	5C.000	0.1021	L72-C1	1.938	1.939	-0.01	3.5040	0.30060E-03	0.30C59E-03	8.972
20	60.000	0.1265	506-01	2.051	2.049	0.10	3.5170	0.29933E-03	0.29941E-03	8.724
21	76.000	C.1509	65C-Cl	2.157	2.137	0.93	3.5270	0.29806E-03	0.298718-03	8.468
	(I) BET	A(I)	LCG BF	(I)AT	SIGMA(I)	К(І)	LOG	K(I) K(I)/	((I+1)	
	1 0.120	4F 04	3.04	3071 0	7C7E C1	C.12045	64 3.0	18071 5.	313	
	2 0.272	9E 06	5.43	36C7 C	.399E C4	0.2267E	03 2.3	6.	147	
	3 0.100	65 C8	7.00	0.280	.815E 06	0.3687E	02 1.5	6673 24.	240	
	4 0.153	1E C 8	7.19	3458 0	426E 08	0.1521E	01 0.1	.8219 ******	kaka)	
	THE NUMBE	ROFIT	FRATION	NS = 10	5	5MIN = 0.2	8302 02			

NO POINTS BLIMINATED

168

.

STABILITY CONSTANT OF TB3-CHMIRA RUN 1 MAY 22 1973

ORIG ACID CONCENTRATION	=	0.09827	IGNIC STRENGTH OF SOLUTION = 0.1000	
ORIG BASE CENCENTRATION	=	0.05262	POTASSIUM NITRATE CONC. = 1.5100	
BUFFER ACID CONC.	=	0.04565	VOLUME OF METAL IGN SOL. = 4.00	
BUFFER SALT CONC.	=	0.05262	CCNC. OF METAL ION SOL. = 0.10582	
RATIO OF THE VKOH TO VE	Ħ	1.00000	CONC. EXCESS ACID IN METAL = 0.0	
FINAL SCLUTICN VOLUME	=	200.00		
STRAIGHT LINE EQUATION-Y	=	0.30593E-C3+(-0.5	52157E-C3)*X	

	(1)	VB	ANIEN	CEN	N EXP	N CALC	ERROR	РН	κ a	USED	KA THEO	VOL KNC3
	1	4.000	0.50291	E-03	0.423	C.421	0.39	3.4620	0.305	67 E -03	0.30777E-03	11.766
	2	6.000	0.76013	5-03	0.572	C.571	0.23	3.4060	0.305	53E-03	0.30665E-03	11.817
	3	8.00C	0.10385	F-02	0.700	0.704	-0.60	3.3820	0.305	539E-03	0.30276E-03	11.851
	4	10.000	0.13242	E-C2	0.819	C.819	0.11	3.3690	0.305	524E-03	0.305682-03	11.867
	5	11.000	C.14827	E-C2	0.869	C.875	-0.58	3.3680	0.305	516E-03	0.30293E-03	11.874
	6	12.000	0.16403	E-C2	0.920	C.926	-0.66	3.3670	0.305	5C7E-03	0.302662-03	11.876
	7	14.000	0.19582	E-C2	1.019	1.018	0.02	3.3660	0.304	915-03	0.30496E-03	11.872
	8	16.000	0.22921	F - C 2	1.108	1.103	6.50	3.3680	0.304	+73E-03	0.306282-03	11.860
	9	18.000	0.26490	E-02	1.186	1.182	0.34	3.3730	0.304	55E-03	0.30553E-03	11.844
	10	20.000	0.30132	E-C2	1.260	1.253	0.55	3.3780	0.304	36E-03	0.30584E-03	11.820
	11	22.000	0.34020	E-C2	1.322	1.321	C.08	3.3850	0.304	168-03	0.304352-03	11.793
•	12	25.000	0.39916	E-C2	1.413	1.411	0.14	3.3940	0.303	385 E -03	0.30417E-03	11.744
	13	28.000	0.45917	5-C2	1.498	1.489	0.64	3.4020	0.303	54E-03	0.30487E-03	11.685
	14	31.000	0.52367	E-C2	1.562	1.562	0.02	3.4120	0.303	20E-03	0.30323E-03	11.622
	15	34.000	0.58933	E-02	1.621	1.627	-0.38	3.4210	0.302	28 6E -03	0.30219E-03	11.554
	16	36.000	0.63139	E-C2	1.670	1.665	0.25	3.4250	0.302	648-03	0.30306E-03	11.504
	17	38.000	0.67733	E-C2	1.699	1.704	-C.30	3.4310	0.302	40E-03	0.30192E-03	11.455
	18	40.000	0.72263	E-C2	1. 731	1.739	-0.44	3.4360	0.302	16E-03	0.30149E-03	11.403
	19	50.000	0.95365	E-02	1.875	1.886	-0.62	3.4570	0.300	196E-03	0.30017E-03	11.127
	20	60.000	0.11926	E-C1	1.983	2.001	-0.92	3.4740	0.299	716-03	0.29873E-03	10.830
	((I) BE	TA(I)	LCG SC	(I) 1 7	SIGMA(I)	к(І)	LOG	K(I)	K(I)/	K(I+1)	
		1 0.10	55E C4	3.04	107	0.81 <i>6</i> 5 01	0.1059E	04 3.	04107	4.	916	
		2 0.24	588 C6	5.39	050	0.249E 04	C.2236E	03 2.	34943	٤.	142	
		3 0.89	45E 07	6.95	159	0.344F C6	0.3640E	C2 1.	56109	*****	北本本	
		THE NUMB	ER DE ITE	RATICN	S = 5	:	SMIN = 0.3	153E C2				
				ATLE								

NO POINTS FLIPINATED

JULY 5 1573 STABILITY CONSTANT OF CY3-DHMIBA RUN 2

DRIG ACID CONCENTRATION	= 0.10	160	ICNIC STRENGTH OF SOLUTION =	0.1000
CRIG EASE CONCENTRATION	≠ 0°C5	262	PCTASSIUM NITRATE CONC. =	1.5100
EUFFER ACID CONC.	+0.0 =	35.8	VCLUME OF METAL ICN SOL. =	4.00
PUFFER SALT CONC.	= 0.05	262	CCNC. DF METAL ICN SCL. =	0.10357
RATIC OF THE VKOH TC VE	= 1.CO	000	CCNC. EXCESS ACID IN METAL =	0.0
FINAL SOLUTION VOLUME	= 200	• 00		
STRAIGHT LINE FQUATION-Y	= 0.30	5c3f-03+(-0•	521575-C3)★X	

KA THEO XA USED Ηd EROR N CALC R EXP ANICN CCN е**х** (1)

VOL KNG3

	1917 **	15 • (1 	35506 18046		0.22865 0	0.3447 UL 0.1457 C4 0.1716 06	731 731 731	7 10 10 1 10 10 1 10 10 1 10 10	455 03 442 C6 468 C6		 ~ ~
	(1+1)	K(I)/	K(1)	901	K(I)	(1) Vr.91S	(I)¢i	liG B∑	TA(I)	BE	1)
10.132	0.296545-03	:92E-03	0.296	3.4900	- 6• 53	58 6	1.c76	71:-01	0.172	30.000	51
10.454	0.298146-03	323 E- 03	0.298	3.4650	-0.12	926	1.524	552-C1	0.1475	10.000	0
10.769	0.30036E-03	9546-03	0.299	3.4550	C.• ⊒.¢	3 • 554	1.87C	495-01	0.1224	5 C • 0 0 C	3
11.0/4	0. 30176E-03	381E-03	C• 30(3.4390	J.85	1. , 763	1.778	07≅-C2	C.582(000000	18
11.362	0.302076-03	03E-03	0.302	3.420C	0.03		1.647	007-02	0.748(• C. OOO	17
11.416	0.30260E-03	227E-03	0.305	3.4150	C.22	617	1.621	20E-C2	0.701.2	38.000	16
11.468	0.30380E-03	252E-03	0-305	3.4050	0.84	1. • 585	1.595	73E-C2	0.653	36.000	5
11.521	0.302155-03	245-03	0.302	3.4060	-C.37	1.555	1.54G	72E-C2	0.611	34-000	4
11.595	0.30324E-03	109E-03	0.30	3.357C	0.08	1 4 99	1.500	712-02	0.543	000	
11.664	0.302955-03	843E-03	0.30	3.3890	-0.25	1.438	1.434	23E-C2	0-4752	8.000	1
11.728	0.302225-03	165-03	0•303	3.3810	-0.74	1.569	1.359	775-02	C.4167	5.000	
11.782	0.303372-03	C8E-03	0*307	3.3710	-0-31	1.287	1.283	54E-C2	0.354.5	22.000	10
11.814	0.303682-03	+29E-03	0.304	3.365 C	-0.25	1.226	1.223	35F-C2	0.314	0000	6
11.439	0.30456E-03	449E-03	0.304	3.3550	0.03	1.159	1.155	335-02	0.2763	8.000	8
11.874	0.304415-03	+86E-03	0.304	3.352C	-C.15	1. 003	1.001	60 <u>₹</u> -C2	0.204.6	4.000	-
11.680	0.30420E-03	504E-03	0.305	3.3520	-0.25	0.912	605.0	11°-C2	0.171.1	2.000	9
11.877	0.30651E-03	512E-03	0.305	3.3520	C•39	C.860	0.863	35E-C2	0.1543	1.000	5
11.974	0.33643E-03	5212-03	0.30	3.3550	0.33	C.808	C.P10	75Ľ-C2	0.1337	0.000	4
11.859	0.306795-03	336E-03	0.305	3 . 367C	0.35	C.693	C.656	75⊱-C2	0.1087	8.000	e
11.831	0.30544E-03	5515-03	0.305	3.3940	-0.02	0.565	0.565	54 5 -C2	0.8066	€.000	2
11.714	0.30442E-03	5782-03	0.305	3.5920	-0.25	0.242	0.242	592-C3	0.2755	2.000	

0.1674E C2

= NIVS

a١

THE NUMBER CF [TARATIONS = NO POINTS SLIMINATER

STABILITY CCNSTART CF PO3-CHMIP& RUN 2 JUNE 11 1973

ALIATICNUSATEATIC	= 0,10160	ICNIC STRENGTH OF SOLUTION =	0.1000
DRIG PASE CONCENTRATION	= 0.052¢2	POTASSIUM NITRATE CCNC. =	1.5100
PUPEER ACTO CENC.	= 0.04858	VOLUME OF METAL ICN SOL. =	4.00
BUFFER SALT CCNC.	= 0.05262	CCNC. CF METAL ICN SOL. =	0.05840
RATIO CF THE VKCH TO VP	= 1.0000	CCNC. EXCESS ACID IN METAL =	0.0
FINAL SCLUTION VCLUMS	= 200.00		
LATER OF THE FULL AT A	-)+60-265200-0 =/	0.52157E-C31#X	

ΰ -SIKAIGFI LINE

(1)	V B	ANICN	N D D	HX H N	N CALC	EKROR	Hd	KA USE	ت	KA THEO	VOL KNC3
1	2-000	C.2795	95-C3	C.255	C • 255	C • 30	3.5920	0.30578È	-03	0.3.7445-03	11.801
• ^	4-000	0.5460	1 - 03	0.436	C.439	-0.60	3.454C	0.30564E	-03	0.302735-03	11.870
יי ו	6-000	0.8169	23-C3	0.590	C.588	0.40	3.3980	0.30550	- 03	0.307255-03	11.910
۲	8-000	0-1113	35-02	C.718	C.721	-0.42	3.3750	C.30535E	-03	0.30372E-03	11.937
- v	1 0.000	0-1414	96-02	563°O	C. 934	0.62	3.3620	0.30519E	-03	0.30737E-03	11.945
.	11-000	C. 1577	85-C2	C.891	C.837	0.43	3.3600	0.30511E	-03	0.33655E-C3	L1.946
-	12-000	0.1753	2=-C2	0.935	0.4939	-0-50	3.3610	0.305025	- 03	0.303405-03	11.947
· 00	14-000	C.2100	51-02	1.025	1.031	-0-62	3.3620	0.304835	-03	0.303015-03	11.938
e o	18.000	0.2834	4-7-C2	1.183	1.1.87	-0.32	3.3690	0.30445	-03	0.33366E-03	11. 897
10	20-000	0.3213	4 5 – C 2	1.256	1.253	C•29	3.3730	0.30425E	-03	0.304925-03	11.866
;=	22-000	0.3528	6E-C2	1.326	1,4312	1.10	3.377C	0.304C5E	-03	0.30644F-03	11.831
1	25.000	0-4239	5E-C2	1.35é	1.396	- C • O 2	3.3880	0.30372E	-03	0.30367E-03	11.775
1	28-000	0-45-14	4 E - C 2	1.471	1,467	0.24	3,3960	0.303395	-03	0.30382E-03	11.710
14	21-000	0.5556	15-02	1.521	1.533	-C.79	3.4060	0.303036	-03	C.30173E-03	11.641
5	34-000	0.6220	55-02	1.581	1.588	- C• 4 7	3.4130	0.302695	-03	0.30196E-03	11.565
1	36.000	0-663	CF-C2	1.622	1 622	-0*05	3.417C	0.302455	-03	0.30243E-03	11.513
17	38.000	0.711.2	52-C2	1.659		C.33	3.4210	0.30228	-03	0.30267E-03	11.459
18	40.000	0.7586	55-02	1.683	1.684	-0.07	3.4260	0.30157E	-03	0.30187E-03	11.404
	(1) 86	ETA(I)	-16 JIT	-7 (])	(I) Vai IS	(1)X	rc3	K(I) K	(T) /K	(1+1)	
			C (T	146	0.86aC 01	5,2,401,0	0.5 14	12746	4 - 8(15	
			1 C C C C C C C C C C C C C C C C C C C	- r - r - r	C. 2541 04	C-2217E	03 2.3	14577	10.29	60	
	3 0 5 C	C84E C7	· · 10	623	0.3840 06	0.21535	C2 1.	33299 **	****	*	

•

SMIN = C.3750E C2

4

THE NUMBER OF ITERATIONS = NO POINTS ELIMINATED

**********FOUR PARAMETER PROGRAM USED*********

STABILITY CONSTANT OF ER3-CHMIEA RUN 1 APRIL 30 1973

.

.

CRIG ACID CENCENTRATION = 0.09605ICNIC STRENGTH OF SGLUTION = 0.1000CRIG BASE CONCENTRATION = 0.05262POTASSIUM NITRATE CONC. = 1.5100BUFFER ACID CONC. = 0.04743VCLUME OF METAL ION SOL. = 4.00BUFFER SALT CONC. = 0.05262CCNC. DF METAL ION SOL. = 0.10546RATIO CF THE VKCH TO VP = 1.00000CCNC. EXCESS ACID IN METAL = 0.0FINAL SOLUTION VCLUME = 200.00STRAIGHT LINE EQUATION-Y = 0.305938-03+(-0.52157E-C3)*X

(I)	V8	ANIC	N CON	N E	XP	N CAL	- C	FRRDR	PH	1	KA	USED	κA	THEO	VOL KNC3
1	4.000	0.465	387-03	C.4	42	C. 44	42	-0.15	3.46	530	0.305	69E-03	0.304	77E-03	11.789
2	6.000	0.7083	373-03	0.5	٥Ç	059	7	0.33	3.40	0 6 0	0.305	56E-03	0.307	/33E-03	11.842
3	10.000	0.125	593-02	0.8	53	C. 85	52	0.12	3.37	120	0.305	27E-03	0.305	579E-03	11.896
4	11.000	0.140	172-02	0.9	C 7	C., 9(08	-0.19	3.37	10	0.305	20E-03	0.304	+39E-03	11.902
5	12.000	0.156	306-02	С.Я	58	C. 96	51	-0.33	3.37	10	0.305	11E-03	0.303	1795-03	11.905
6	14.000	C.188	343-02	1.0	54	1,05	57	-0.25	3.37	730	0.304	95E-03	C.304	1045-03	11.902
7	16.000	0.221	212-02	1.1	47	1,14	42	0.40	3.37	76C	0.304	78E-03	0.306	11E-03	11.890
8	18.000	0.257	118-02	1.2	23	122	23	-0.01	3.38	330	0.304	59E-03	0.304	156E-C3	11.873
9	20.000	C.293	335-02	1.2	98	1,29	94	0.27	3.35	390	0.304	40E-03	0.305	15≝-03	11.849
10	22.000	0.331	285-02	1.3	64	1,30	51	C.25	3.39	6ec	0.304	20E-03	0.304	1876-03	11.821
11	25.000	0.391	712-02	1.4	47	1,4:	53	-C.41	3.40	08C	0.303	89E-03	0.302	291E-03	11.771
12	28.000	0.451	795-02	1.5	32	1.53	31	0.08	3.41	17C	0.303	575-03	0.303	1750-03	11.712
13	31.000	0.515	323-02	1.6	01	1.50	23	-0.12	3.42	270	0.303	24E-03	0.303	101E-03	11.647
14	34.000	0.578	625-02	1.6	72	1,50	56	0.35	3.43	850	0.302	S1E-03	0.303	155E-03	11.577
15	36.000	0.624	428-02	1.7	02	1.70	C 7	-C.35	3.44	120	0.302	67E-03	0.302	2062-03	11.529
16	38.000	0.668	292-02	1.7	41	1.74	44	-0.18	3.44	47C	0.302	4 4E -03	0.302	142-03	11.478
17	40.000	C.713	029-02	17	77	1.7	79	-0.14	3.4	520	0.302	218-03	0.301	198E-03	11.426
18	5C.000	C.941	135-02	19	34	1.92	26	C.41	3.47	730	0.301	02E-03	0.301	562-03	11.147
19	60.000	0.117	985-01	2.0	44	2.04	44	0.00	3.49	910	0.299	78E-03	0.295	78E-03	10.850
20	76.000	0.142	178-01	2•1	40	2.1	38	0.67	3.50	050	0.298	51E-03	0.298	1582-03	10.540
21	8C.000	0.166	835-01	22	14	2.2	17	-0.16	3.51	17C	0.297	23E-03	0.297	1095-03	10.222
	(I) BET	TA(I)	LCG	BTA(I)		SIGMAL	1)	к(1)		LCG	к(І)	к(I)/	K(I+1)		
	1 0.12	88E C4	3.	10557	Ċ	.6568 (oı	0.12885	04	з.	10597	5.	343		
	2 0.310	C6E C6	6	49214	C	.2515 (04	0.24115	03	2.	38216	٤.	262		
	3 0.119	SAF CE	7.	C7760	Ċ	.5112 0	06	C.3850F	02	1.	59547	17.	115		
	4 0.269	502 C.8	7.	42970	Ō	.235E (D B	0.2253E	61	0.	35209	******	ranahan ang	·	
	THE NUMB	ER DE I	TERATI	CNS =	10			SMIN = 0.1	317E	C 2					

NC POINTS ELIMINATES

STABILITY CONSTANT OF TM3-DHMIBA RUN 2 AUGUST 19 1973

ICNIC STRENGTH OF SOLUTION = 0.1000 ORIG ACID CONCENTRATION = 0.09759 POTASSIUM NITRATE CONC. = 1.5100 ORIG PASE CONCENTRATION = 0.05262 VOLUME OF METAL ICN SOL. = 4.00 EUFFER ACID CONC. = 0.04497 CCNC. OF METAL ICN SOL. = 0.10109 = 0.05262 EUFFER SALT CONC. CCNC. EXCESS ACID IN METAL = 0.0 RATIO CF THE VKCH TO VB = 1.00000 FINAL SOLUTION VOLUME = 200.00 STRAIGHT LINE EQUATION-Y= 0.30593E-03+(-0.52157E-03)*X

(1)	VB	ANICN	CCN	N EXP	N CALC	ERROR	РН	КA	USED	KA THEO	VOL KNO3
1	2.000	0.23045	E-03	0.273	0.273	0.07	3.591	10 0.305	58 1E- 03	0.30635E-03	11.780
ž	4.000	C.4568C	E-C3	0.473	0.473	0.04	3.443	30 0.305	569E-03	0.305928-03	11.864
3	6.000	0.69708	E-03	0.639	0.639	-0.01	3.380	60 0.30	557E-03	0.30553E-03	11.919
- Ĩ	F.000	0.95609	8-03	0.784	0.784	-0.10	3.36	10 0.30	543E-03	0.30491E-03	11.955
5	10.000	0.12350	E-C2	0.911	0.913	-0.21	3.351	10 0.305	529E-03	0.30434E-03	11.975
6	11.000	0.13809	E-02	C.97C	C.971	-0.16	3.349	90 0.30	521 2 -03	0.30453E-03	11.980
7	12.000	C.15295	5-02	1.027	1.026	0.07	3.34	80 0.30	513E-03	0.30543E-03	11.982
8	14.000	C.18442	E-C2	1.131	1.129	C•14	3.350	0C 0.304	4978-03	0.30548E-03	11.979
9	16.000	0.21784	8-02	1.223	1.223	0.03	3.35	50 0.304	479E-03	0.30489E-03	11.968
10	18.000	C.25262	E-02	1.308	1.307	6.09	3.36	10 0.304	461E-03	0.304912-03	11.950
11	20.000	C.28900	z -02	1.385	1.384	C.06	3.36	8C 0.304	442E-03	0.30460E-03	11.925
12	22.000	0.32645	F-02	1.457	1.454	0.16	3.37	50 0.304	+23E-03	0.30467E-03	11.896
13	25.000	0.38513	F-C2	1.552	1.549	C.15	3.380	60 0.303	392E-03	0.30428E-03	11.843
14	28.000	0.44646	E-C2	1.634	1.634	-0.01	3.39	70 0.303	360E-03	0.30357E-03	11.783
15	31.000	C.50929	E-62	1705	1.709	0.02	3.40	70 0.303	327E-03	0.30331E-03	11.717
16	34.000	0.57327	8-02	1.775	1.775	0.23	3.410	60 0.302	2948-03	0.303372-03	11.644
17	36.00C	0.61868	£-C2	1.811	1.817	-0.30	3.423	30 0.302	270 E -03	0.30216E-03	11.595
18	38.000	0.66217	≝-C2	1.854	1.854	C.01	3.42	80 0.302	248E-03	0.30250E-03	11.542
19	46.000	0.70919	5-C2	1.885	1.891	-C.32	3.43	40 0.302	224 E -03	0.30171E-03	11.489
20	50.000	0.53523	Ē−C2	2.034	2.040	-0.29	3.45	70 0.30	103E-03	0.300652-03	11.204
	(I) BE	TA(I)	LCG 95	TA(I)	SIGMA(I)	K()	()	LGG K (I)	K(I)/H	<(I+1)	
	1 0.14	01E C4	3.14	£45	0.235E 01	C.1401	LE 04	3.14645	4.8	BC6	
	2 0.40	848 C6	5.61	108	0.1158 04	C.2915	5F. 03	2.46464	5.5	525	
	3 0.21	55F C8	7.33	3340	0.1805 06	0.5276	E 02	1.72232	*****	le alt alt	
	THE NUMB	ER OF ITE	PATION	15 = 4		SMIN = C	.3877E	C1			

.

NO PEINTS ELIMINATED

173

STABILITY CENSTANT OF YE3-DHVIEA RUN 2 AUGUST 5 1973

FINAL SOLUTION VOLUME =	CRIG PACE CONCENTRATION - CRIG PASE CONCENTRATION - PUFFER SALT CONC PUFFER SALT CONC RATIO OF THE VKCH TO VR -	DOTA ACTO CONCENTUATION -
, "		 ت
200.00	05262 05262	E LCUL
>		
	CONC.	TONIS
	SIUP NITRATE CONC. = E OF METAL ICN SCL. = TYPE METAL ICN SOL. = EXCESS ACID IN METAL =	STRENGTH DE SOLUTION =
		_
	1.5100 1.00 1.0025	1000

STRAIGHT LINE ECLATION-Y= 0.305935-03+(-0.521575-03)*X

	400 40	4 • 5	20839 55028 7 14 47	04 C3 C2 L.	0.16162 C.35505 C.5182E	4C9£ 01 2195 04 3665 06	535 C	3 • 20 5 • 75 7 • 47	163 C4 378 C6 732 C8	0.16 0.57 0.25	3 ≥ -
	(1+1)	K(I)/K	K(I)	L06	K(I)	STGNA(I)	TA(1) \$	LCC 9r	TA(I)	BE	(1)
11.508	0-30199E-03	2268-03	0.302	3.3900	-0.16	1.942	1.939	452-02	0.704	C.000	61
11.563	0.30245E-03	2498-03	0.302	3.3840	-0-03	1.908	1.907	665-02	0.6550	000	3
11.616	0.302616-03	273E-03	0.30;	3.3780	-0.06	1.872	1.871	922-62	C.613	6.000	7
11.668	0.30337E-03	2968-03	0.30	3.3710	0.21	1.833	1.837	84 =- C 2	C.562	4.000	91
11.743	0.303432-03	330E-03	0.303	3.3610	0.06	1.770	1.771	11E-C2	0.504	1.000	ີ ເອ
11.812	0.30363E-03	363E-03	0.30	3.3500	00.00	1.699	1.655	752-02	0.440	8.00C	4
11.876	0.304082-03	3¢5E-03	0.303	3.3380	0.05	1.617	1.618	252-02	0.379;	5.000	2
11.931	0.30394E-03	+26E-03	0.304	3.3260	-C.11	1.525	1.523	592-02	C-320	2.000	2
11.963	0.30374E-03	445E-03	0.304	3.3180	-0-23	1.456	1.453	04=-02	0.2830	C.000	2
11.988	0.305115-03	465E-03	0.30	060ȰE	0.14	1.378	1.39C	067-02	C.2460	8.000	10
800°71	0.304916-03	+ e 3E-03	0.304	3.3020	0.02	1.293	1.293	53E-C2	C.211	6.000	1 6
12.020	0.305375-03	500E-03	0.305	3.2960	60.0	1.193	1.199	472-02	C.1784	4.000	8
12.022	0.307092-03	5162-03	0.305	3.2920	C•42	1.051	1.056	C6E-C2	0.1470	2.000	7 1
12.022	0.303695-03	524E-03	0.305	3.294C	-0-32	1.037	1.033	045-02	C.133(1.000	61
12.016	0.30479E-03	531E-03	0.305	3-2950	-0.10	C.ç75	0.574	543-02	.811°0	C.000	5
11.995	0.30481E-03	545E-03	0.305	3.3050	-0.11	0.841	0.840	492-03	0,915,	000	4
11.957	0.306562-03	5582-03	0.305	3-33CC	0.15	0.688	0.689	8CE-C3	0.664	6.000	ω
11.899	0.30495E-03	570E-03	0.305	3.389C	-C.10	C.512	0.511	648-03	C.4350	4.000	2
11-808	0-30627E-03	582E-03	0.305	3.5400	0.05	C.297	0.257	17=-C3	C.219	2.000	
VOL KNO3	KA THEO	USED	×A	PH	になないの	N CALC	NEXP	V CCN	ANIC	٧В	1)

NC POINTS ELEMINATED

THE NUMBER OF THERATIONS =

 $S_{M}IN = C.8C79E OI$

.

÷

**********THREE PARAMETER PROGRAM USED********

STABILITY CONSTANT OF LU3-DHMIBA RUN 2 JULY 17 1973

ORIG ACID CENCENTRATION	=	0.10164	ICNIC	STR	ENGTH	1 OF 5	SOLUTION	=	0.1000
CRIG BASE CONCENTRATION	Ξ	0.05262	POTAS	SIUM	NITR	ATE C	CONC.	Ξ	1.5100
BUFFER ACID CONC.	Ξ	0.04902	VOLUM	3 DF	META	L IGN	SOL.	≂	4.00
BUFFER SALT CONC.	=	0.05262	CONC.	ĴF	META	L IGN	SOL.	=	0.10210
RATIO OF THE VKCH TO VP	=	1.0000	CCNC.	2XC9	ESS A	CID 1	IN METAL	=	0.0
FINAL SCLUTICN VOLUME	=	200.00							
STRAIGHT LINE EQUATION-Y	=	0.305932-03+(-0.5	52157E-	-0314	×χ				

(1)	VB.	ANICN	CCN	N EXP	N CALC	ERROR	РН	KA USED	KA THEO	VOL KNO3
1	2.000	0.20450	E-C3	0.301	C+302	-0.05	3.5320	0.30582E-03	0.30534E-03	11.787
2	4.CCO	0.40832	E-C3	0.521	C.520	0.16	3.3770	0.30572E-03	0.306995-03	11.883
3	6.000	0.62905	5-03	0.700	C+702	-C.21	3.3180	0.30560E-03	0.304146-03	11.947
4	8.000	0.86513	5-03	0.858	C.856	0.22	3.2910	0.30548E-03	0.30681E-03	11.987
5	16.000	C.11240	E-02	0.554	0.992	0.23	3.2810	0.30534E-C3	0.30662E-03	12.010
6	11.000	0.12666	E-C2	1.053	1.057	-0.30	3.2810	0.30527E-03	0.303695-03	12.019
7	12.000	C.14092	€-C2	1.112	1.115	-0.24	3.2810	0.30519E-03	0.304012-03	12.022
8	14.000	0.17079	5-02	1.222	1.222	-0.01	3.2840	0.30504E-03	0.30497E-03	12.021
9	16.000	0.20263	₹-C2	1.320	1.319	0.13	3.2900	0.304872-03	0.305402-03	12.010
10	18.000	0.23651	£-C2	1.468	1.400	C.11	3.2980	0.30470E-03	0.30509E-03	11.992
11	20.000	0.27222	£-02	1.485	1.485	-0.01	3.3070	0.30451E-03	0.30449E-03	11.968
12	22.000	0.30926	E-C2	1.557	1.55?	-0.02	3.3160	0.30432E-03	0.30425E-03	11.938
13	25.000	0.36695	E-02	1.654	1.652	0.11	3.3290	0.30402E-03	0.30431E-03	11.884
14	28.000	0.42771	E-C2	1.736	1.736	0.01	3.3420	0.30370E-03	0.30373E-03	11.822
15	21.000	C.49047	Z-C2	1.809	1.909	-0.01	3.3540	0.30337E-03	0.30334E-03	11.753
16	34.000	0.55491	£-C2	1.875	1.874	0.01	3.3650	0.30304E-03	0.30305E-03	11.679
17	36.000	0.59895	≝-02	1.913	1.914	-0.05	3.3720	0.30281E-03	0.302712-03	11.628
18	38.000	0.64266	3-02	1.954	1.950	0.19	3.3780	0.30258E-03	0.30294E-03	11.574
19	4C.000	0.68903	2-C2	1.981	1.986	-0.22	3.385C	0.30234E-03	0.30195E-03	11.520
20	50.000	0.92063	ẽ−C 2	2.124	2.127	-0.16	3.4110	0.30113E-03	C.30090E-03	11.230
	(I) BET	FA(I)	LCG BET	TA(I)	SIGMA(I)	K(I)	LOG	K(I) K(I)/	<(I+1)	
	1 0.176	59E 04	3.24	765 C.	4095 01	0.1769E	04 3.	24769 4.0	531	
	2 0.675	5 65 Ce	5.82	9€9 0	.221E 04	C.3819E	03 2.	58200 6.3	327	
	3 0.407	18E CR	7.61	047 0	.3E7F 06	C.6036E	02 1.	79078 *****	ta at an	
	THE NUMBE	ER OF ITE	RATION	S = 4,		SMIN = 0.	78715 C1			
STABILITY CONSTANT OF Y3-DEMIRA PUN 2 JULY 17 1973

 ORIG ACID CENCENTRATIEN = 0.10164
 IENIE STRENGTH OF SOLUTION = 0.1000

 ORIG BASE CENCENTRATIEN = 0.05262
 POTASSIUM NITRATE CONC. = 1.5100

 BUFFER ACIE CENC. = 0.04902
 VELUME OF METAL IEN SOL. = 4.00

 EUFFER SALT CENC. = 0.05262
 CENC. 0F METAL IEN SOL. = 0.09698

 RATIO EF THE VKCH TO VB = 1.0000
 CENC. EXCESS ACID IN METAL = 0.0

 FINAL SOLUTIEN VELUME = 200.00
 STRAIGHT LINE EQUATIEN-Y= 0.30593E-03+(-0.52157E-03)*X

(I)	VB	ANICH C	CN	N EXP	N CALC	ERROR	PH	KA USEC	KA THEO	VOL KNO3
1	2,000	C.32050F	-63	0.229	0.228	0.45	3.6210	0.305768-03	0.30764E-03	11.801
2	4.000	0.616052	-63	0.393	C. 394	-0.43	3.4880	0.30561E-03	0.30396E-03	11.856
3	€.000	C.914763	-63	0.532	0.532	-0.04	3.4340	0.30545E-03	0.30531E-03	11.888
4	8.000	0.122985	-02	0.652	C.,655	-0.36	3.4090	0.30529E-03	0.304145-03	11.907
5	10.000	0.155628	-02	0.761	C., 762	-0.15	3.3960	0.30512E-03	0.30469E-03	11.913
6	11.000	0.17230E	- C Z	0.813	0,312	0.13	3.3920	0.30503E-03	0.30540E-03	11.912
7	12.000	C.189673	-02	0.860	C.960	0.04	3.3900	0.30494E-03	0.30505E-03	11.909
8	14.000	0.225048	-02	C.950	C.948	0.24	3.3880	0.30476E-03	0.30535E-03	11.898
9	16.000	0.26205F	-02	1.030	1-028	0.13	3.3890	0.30456E-03	0.30487E-03	11.881
10	18.000	0.299945	-62	1.105	1,102	C.27	3.3910	0 .30437E-03	0.30496E-03	11.857
11	20.000	0.33981F	-02	1.169	1,171	-0.17	3.3950	0.30416E-03	0.303815-03	11.830
12	22.000	0.379408	-02	1.234	1,232	0.20	3.3980	0.30395E-03	0.304336-03	11.797
13	25.000	0.44129E	-02	1.319	1,317	C.21	3.4040	0.30363E-03	0.30400E-03	11.741
14	28.000	0.505915	-02	1.390	1,393	-0.25	3.4110	0.30329E-03	0.30289E-03	11.680
15	31.000	C.57098E	-C2	1.459	1.461	-0.18	3.4170	0.30295E-03	0.30268E-03	11.612
16	34.000	0.6361CE	-02	1.528	1,522	0.39	3.4220	0.30261E-03	0.30316E-03	11.539
17	36.000	0.682516	-02	1.555	1,561	-0.37	3.4270	0.30237E-03	0.30187E-03	11.490
18	38.000	C.727195	- C 2	1.597	1,596	0.07	3.4300	0.30214E-03	0.302228-03	11.438
19	50.000	C.10084E	-01	1.766	1,773	-0.42	3.4500	0.33067E-03	C.30024E-03	11.105
20	60.000	0.12498F	- C 1	1.878	1,386	-0.41	3.4630	0.29942E-03	0.299C6E-03	10.806
	(I) BET	FA(I) L	CG BSTA	(1)	SIGMA(I)	KII) LCC	G K(I) K(I)/	K(1+1)	
	1 0.81	73E C3	2.9123	8 0	0.242= 01	C. 8173	E C3 2.	91238 4.	681	
	2 0.142	276 06	5.1544	t (0.9532 03	C.1746	EC3 2.	24208 6.	447	
	3 0.386	5Ē 07	6.5871	6 (0.1217 06	C.27C8	E 02 1.	43270 ******	***	
	THE NUMB	ER OF ITEP	ATIONS	= 5		SMIN = 0	.8319E 01			

XII. APPENDIX D:

FORMATION CONSTANTS OF BIVALENT TRANSITION METAL

 α , β -DIHYDROXYISOBUTYRATE COMPLEXES

.

.

STABILITY CONSTANT OF CC2-CHIPA FULL 2 DCTOBER 5 1971

	([+1])	K(I) K(I)/K	LOG	K(I)	(I) VADIS	. TA(1)	רנט אי	TL(!)	38 (1)	
6.014	0.257172-03	0.257042-03	3.5763	5.9P	0.499	0.492	26222-01	C.1	31.00C	19
5 8D • 9	0-257425-03	0.257258-03	3.5762	1.17	2.469	0.475	12-C1	0.10	35.000	18
6.191	0-25779E-03	0.25759=-03	3.5762	1.30	3.441	C.44ć	235C1	C• 1	32.000	17
6.261	0.258048-03	0.257832-03	3.5763	1.38	0.421	0.427	4283L-C1	C.1:	30.000	15
6.332	0-258302-03	C.258C7E-03	3.5765	1.48	C.400	C.40ć	13-2265	C.1	26.300	15
6.402	0.258592-03	0.258322-03	3.5768	1.7C	3.379	C•385	13-25851	0.1	26.000	14
6.471	0.25887F-03	0.258582-03	3.5773	1.77	2.357	J.3€j	1435:-01	0.10	24.000	13
6.540	0.259045-03	0.258855-03	3.5792	1.13	3.334	55°0	3494"-01	C-1	22.0000	12
6.609	0.259412-03	0.25914E-03	3.5791	1.61	0.310	0.315	54705-02	C. Ç!	20.000	11
6.677	0.259252-03	0.259437-33	3.5812	-1.04	J.286	0.293	[]-:::	C.F.	18.000	10
6.745	0.259663-03	0.25974E-03	3.5830	-C.48	0.260	U.25c	574402	C.7(16.000	p
6.941	0.260835-03	C.26082F-03	3.5550	0.07	3.175	0.17÷	59817-02	C-41	1 C. 000	م :
086.9	0-261055-03	C.26102E-03	3.5588	0.12	3.161	C.161	390102	0.4	5.00C	7
7.013	C-20C982-03	0.26124e-C3	3.604C	-1.34	0.146	0.144	02643-02	с. ч	P.000	6
7.046	C-26118E-03	0.26147E-03	3-6102	-1.48	2.130	ວ. ເບີ. ເບີ.	45E73-C2	0.3.	7.000	თ
7.079	C-26198E-03	0 •26172€-03	3.6176	1.27	0.114	0.115	7245E-C2	C.2	6.000	4
1.111	$0 \cdot 261672 - 03$	C.25159E-03	3.6295	-1.55	3.067	C.Oct	2152-02	C•2	5.000	ŝ
7.1//	0.262762-03	0.262622-03	3.6700	9.7 C	3.062	C • C 6 3	57512-C2	0.19	3.000	2
7.244	0-263528-03	0-26353E-03	3.8172	-0.36	3.024	0.024		۰. ۲.	1.000	1
VOL KNC3	KA THED	KA USED	РН	EFROR	N CALC	v ∵ vo	102 002	140	٧B	(1)
		(x)	RT	COH-C4)*SQ	-03+{-0.600	-:00592- 100-00	1.7.1.0.7.= 0 	רא ארו רא ארו	VIGHT LIN	STR
		METAL = 0.0	ACID IN	NC. EXCESS	co			VK CH		RAT
	35	OL. = 0.100	TAL ICN S	NC . OF ME	СС	0.04958	1	CENC-	ER SALT	BUF
	10	10. = 1.290	TRATE CON	TASSIUM NI	< PC).(4<5F	-ATICA = 0	NCSNT	EASE CC	
	00	JTION = 0.100	TH OF SOL	NIC STRENG	īC).(9945	ATICN = C	NCENTR	ACID CE	UNI KO

NC FOINTS FLEMINATED

THE NUMBER OF ITERATIONS =

d,

N **H**

0.41450 UN 0.2416- UN

1.61754 2.33315

0.741-01 C.334: 02

C.4145⊨ 02 C.5830≓ 01

1.61754 C.76564

SVIN = C.20028-01

STABILITY CONSTANT OF NI2-DHIPA RUN 3 FOTCERS & 1971

CDIC ACTO CONCENTS ATTON	Ŀ	TINIT STRUCT	NGTH OF SOLUTION =	
	1			0007-0
DRIG EASE CONCENTRATION	9	0.C4557 D0TASSIUM	VITRATE CONC. =	1.2901
BUFFER ACIC CONC.	в	C.CSU20 VCLUME JF	METAL ICN SOL. =	2.00
BUFFER SALT CONC.	н	J.C4937 CCNC. JE	METAL ICN SOL. =	0.05664
RATIO CF THE VKCH TC VP	ħ	1.CCCOC CCAC. ZXCF	SS ACID IN WETAL =	0.0
FINAL SCLUTICH VOLUME	11	100.00		
STRAIGHT LINE SQUATION-Y	٣	0.265007-03+(~0.600C03-04)*	SG RT(X)	

	>	Ē	NUINA	ί Ω	N N	2 	STV	HC K G H	нd	ΥA	USEC	CEHL VA	VOL KNC3
~1	1.	000	C.5°341(£ – C 3	C.038	°.	737	0.03	3.9063	0.263	155E-03	0.26356E-03	7.265
2	4.	000	C.20002.0	5 - C 2	C.120	0	121	-0.75	3.6330	0.262	325-03	0.262092-03	7.173
m	5 C	000	0.24564	1-02	0.147	.0.	145	1.13	3.6163	0.262	036-03	0.26236E-03	7.142
4	ŕ.	000	C. 25228.	č-C 2	5.1e7	۲ С.	170	-1.47	3.6063	0.261	765-03	0.26132F-03	7.111
ŝ	7.	000	0.33901	× 0 − 5	0.152	°.0	193	-0.52	3.5580	0.261	515-03	0.261365-03	7.080
Ŷ	ů	000	C. 3 9314	£ − C 2	0.215	, 	214	2.00	3.5911	0.261	296-03	0.261852-03	7.049
~	•	000	C.4294C.	(-02	0.235	ن: د	236 .	1.34	3.5868	0.261	C7E-03	0.261445-03	7.018
σ	10.	000	C.47546	2-02	0.263	ۍ د	257	1.46	3.5832	0.260	186E-03	0.261265-03	6.9R6
σ	12.	000	C.F5AlF	-02	0.290	с	257	3.96	3.5783	0.260	14 85-03	0.256732-03	6.921
10	14.	000	0.66122	دی دی ۱	0.335	• • •	334	C.63	3.5751	C.260	125-03	0.2602RE-03	6.856
11	16.	000	C.75464	2 0 - 2	0.17		369	0.33	3.5730	0.259	:796-03	0.259872-03	6.790
21	18.	000	C. F4637	:-C2	104.0	, 0, 1	403	11. C	3.5716	0.259	475-03	0.25950c-03	6.723
13	22	000	C.LC375	;-C1	0.458	.0.	465	-1.32	3.5705	0.258	19 <u>5</u> -03	0.25859£-03	6.586
14	24.	000	0.11321	5 – C 1	0.44		°0;	-2.40	3.5705	C.258	61E-03	0.258095-03	6.517
15	26.	000	C.1225F	7-01	0.440	·0	:21	-4.46	3.5710	0.258	355-03	0.257406-03	6.447
16	28.	000	0.13242	:-CI	0.527		242	-3.66	3.5707	0.258	105-03	0.257345-03	6.377
17	30.	000	0.14196	5 - C 1	0. 50 10	• •	571	-2.31	3.5705	C.257	E5E-03	0.25729-03	6.307
18	- З Е	000	C.1-132		0.583	0	595	-1•c6	3.5704	0.257	é 2E - 33	0.25723=-03	6.237
	(I)	BETA	(7)	rce ar	TA(I)	2 I GN 2	(1)	(I)×	LDO	(I)X	K(I)/K	(1+1)	
	I	C.66C7	с 02 г	1.32	002	2.1125	00	C.¢6C75	C2 1.	. F2002	7.3	çß	
	2	0.5°CI	5 C3	2:42	150	343443	32	0.8931E	01 0.	,55039	*****	• •	

CELEVINITE SINIDA CN

» CNUÍLVSJLÍ SÚ BBBWNN EHL

SMIN = 0.4150E-01

4

.

STABILITY CONSTANT CE CUR-CHIFA RUN 2A JULY 30 1971

ORIG ACID CONCENTRATION	0 =	10007 ICNIC	STRENGTH OF SJLUTION =	0.1000
CRIG EASE CONC.NTRATION	= 0.	C4557 D01ASS	SIUM NITRATE CONC. =	1.2501
BUFFER ACIC CONC.	• • •	CSCLO VELUME	: RF METAL ICN SCL. =	2.00
EUFFER SALT CCAC.	п О.	C4957 C4957	JF YETAL ICN SCL. ≈	0.10261
RATIC CF THE VKCH TO VE	יי ווי	cocoo CCNC.	EXCESS ACID IN METAL =	0.0
FINAL SCLUTION VOLUMS	= I (cc.cc		
STRATGH LINF ECUATION-1	x = Ο • Ξ	265004+03+(-0.60CC03-	-04) + SQ RT(X)	

E	>	۲. ۲.	ANIUN	CCN	N CXE	Z	CALC	HRRDR	Ha	КA	USED	KA THEU	νη κνυз
~	2.	000	C.7392	4 5-03	0.255	0	1.255	-0.03	3.5757	0.263	1375-03	0.263305-03	7.273
~	4.	000	1941.0	002	0.423	0	+ 42.2	0.11	3.5100	0.262	726-03	0.262892~03	7.249
m	ъ.	000	C.13C7	52-45	C.491	C L	5,452	- 0. 06	3.4982	0.262	1456-03	0.26237E-03	7.232
4	ŕ.	000	C.2135	20-02	0.4.50	ں ۳	.554	-0.17	3.4921	0.262	202-03	0.26196E-03	7.213
ŝ		000	0.2564	07-C2	0.613	C ~	. 609	0.66	3.4980	0.261	56E-03	C.26280£~03	7.191
Ŷ	α;	000	0.2965	21-12	0.661	0	1.662	- C.03	3.4980	0.261	736-03	0.261695-03	7.167
2	• 5	000	C.336A	34-C2	0.7CF	0	- 7Ca	-0-05	3.4983	0.261	52E-03	C.26146E-03	7.142
œ	10.	000	C. 37¤4	4 C 2	C.749	0	. 753	-0.54	3.49CC	0.261	315-03	0.25073E-03	7.116
σ	12.	000	0.4620	35 - C 2	C.F27	0 ~	.329	-0.26	3.493C	C•260	52E-03	0.26C67E-U3	7.059
10	16.	000	0.6316	0 02	140.0	0		-0.92	3.5020	0.260	121ë-03	0.255555-C3	6.937
1	18.	000	C.7259	72-03	155.0		, 307	-0.45	3.5063	0.259	896-03	C.25919E-03	6.872
12	20	000	6.5157	23-21	1.046	-	.053	-C.6E	3.5100	0.255	158Ē-03	0.259125-03	6.805
13	22.	000	C. SC71	9% - C 2	1.056	-	.095	+0.83	3.5139	0.259	1295-03	0.258755-03	6.738
14	24.	000	C.5569	3:-02	1.135		.132	0.29	3.5164	0.255	015-03	0.255185-03	6 • 6 6 9
۲. ۲	ບ ຕ	000	0.1276	35-01	1.231		. 227	C.30	3.5257	0.258	1226-03	0.25837E-03	6.458
16	с. С.	000	C.1513	4 - C I	1.291	-1	.292	-0.06	3.5324	C.257	625-03	0.25759E-03	£.277
17	4 C.	000	0.1751	4:-01	1.344		.346	-C.JB	3.5379	0.257	C6E-03	0.257025-03	6•093
	(1)	BFT.	4(I)	1°G 37	(1) 7 i	N Ú Ì S	(])v	(1)>	רסנ	(1) X (1)	X(1)X	(1+1);	
	7	0.42¢	3F C3	2.63	チムこ	C. 516	C0 -	0.42535	03 2.	.63276	€ ° 5	184	
	2	3.156	4: 05	4.20	:1:	0.169	; 03	0.45755	C2 1.	66037	****	**	

SMIN = 0.28265 00

4

THE NUMBER OF TTERITIONS = NC POINTS SHIPNATES

STABILITY CONSTANT OF 242-DEFIRE PUN 30 AUGLST 16 1971

I) VE AMIGN CF F1 SX N CALC FREDR PH K I 2.000 C.15515F-C2 C.254 C.264 -0.20 3.6615 C.2 I 2.000 C.15515F-C2 C.100 0.490 3.6615 C.2 I 4.000 C.26558E-C2 C.1132 C.1107 1.54 3.6615 C.2 I 4.000 C.26598E-C2 C.1132 C.1107 1.54 3.6615 C.2 I 12.000 C.26598E-C2 C.1132 C.1107 1.54 3.6615 C.2 I 12.000 C.43275E-C2 C.1146 C.151 -3.56 3.64168 C.2 I 12.000 C.43275E-C2 C.224 C.2147 C.210 3.21 3.65168 C.2 I 14.000 C.46679E-C2 C.224 C.226 C.277 3.5880 C.2 3.5880 C.2 C.277 3.5880 C.2 2.2 C.337 1.8 3.5895 C.2 C.2 C.277 3.5725 C.2 C.2 C.277 3.5725	TRAIGHT LINF "CUNTION Y= 0.2007-03+(-0.60007-04)*S2 RT(X) I) VE ANION CC1 EXESOT-03+(-0.60007-04)*S2 RT(X) 2 ANION CC1 EXESOT-03+(-0.60007-04)*S2 PH K 2 ANION CC1 EXESOT-03+(-0.60007-04)*S2 PH K 2 ANION CC1 EXESOT-02 C.107 -0.20 3 ANION CC1 C.155157-02 C.108 0.107 -0.493 4 ANION CC1 C.255587-02 C.1130 1.54 3.6615 C.2 5 G.000 C.255587-02 C.217 C.1210 1.54 3.6200 C.255587-02 4 ANION C.255587-02 C.224 C.224 C.237 3.521 3.6108 0.238 1 2000 C.4432759-02 C.230 C.224 C.425 -2.75 3.5990C 0.275 1 2000 C.444179-02 C.321 C.327 3.5995 C.2 0.275 3.5995 0.2 1 2000 C.444172-01 C.4457 C.433 3.5745 0.2 0.2 0.2 3.5725 0.2 3.5725 0.	RATIC CENT: CENC: EXCESS ACID IN METAL RATIC CETTE VK0H TJ VP = 1.00000 CENC: EXCESS ACID IN METAL FINAL SELLTIEN VCLUVE = 1.00000 FINAL SELLTIEN VCLUVE = 1.00000 FINAL SELLTIEN VCLUVE = II STRAIGHT LINF EQUATION YF = 1.00000 FINAL SELLTIEN VCLUVE = 1.00000 FINAL SELLTIEN VCLUVE = 1.00000 II Strong Content of the strong the stro		10•395 *****	6557 4874 ###	C2 1.7 01 0.7	C.58295 C.58C75	0.127; 03	5=57 (1431 (1.70 2.5	50 1 1 6 2 5 0 1 1 6 5	0.320	
VE AMIEN OF E SATEN OF	TRAIGHT LINF SQUATION OF SQUATION (10,000,000,000,000,000,000,000,000,000,	RATIC CF THY VR/HTJ VP = 1.00000 CCNC = XCESS ACID IN METAL FINAL SELLTIEN VCLUVE = 1.00000 STRAIGHT LINF SCUNTIEN-YE D.225007-03+(-0.60000-04)*SQ RT(X) 1 3.000 C.155157-C2 C.024 -0.20 3.6615 0.22 2 4.000 0.247555-C2 C.152 C.154 -0.20 3.6615 0.22 3 5.000 C.4327557-C2 C.152 C.151 -3.54 3.6615 0.22 4 6.000 C.4327557-C2 C.152 C.150 3.21 3.6363 0.22 5 5.000 C.4327557-C2 C.224 C.226 0.151 -3.54 3.6108 0.22 4 6.000 C.4327557-C2 C.224 C.217 C.210 3.21 3.6363 0.22 5 10.000 C.466799-C2 C.224 C.225 -2.75 3.5180 0.22 6 10.000 C.466979-C2 C.3367 C.337 3.5890 0.22 0.21 11 20.000 C.466979-C2 C.367 3.5755 0.22 0.21 3.5755 0.22 </th <th>K(I)/K(I+L)</th> <th>×</th> <th>*(1)</th> <th>LOS</th> <th>K(I)</th> <th>SICMAII</th> <th>[1]) **[</th> <th>LCC a</th> <th>FALLY</th> <th>.) 8E1</th> <th>-</th>	K(I)/K(I+L)	×	*(1)	LOS	K(I)	SICMAII	[1]) **[LCC a	FALLY	.) 8E1	-
I) VE ALENT CF E SXE N CALC REFT PH K 1) VE ALENT CF E SXE N CALC REFT PH K 2 ALENT CF E SXE N CALC REFT PH K 2 ALENT CF E SXE N CALC REFT PH K 2 ALENT CF E SXE C.15515F-C2 C.1107 1.54 3.6615 C.2 2 S.0000 C.249558E-C2 C.1142 0.1107 1.54 3.6615 C.2 3 S.0000 C.449558E-C2 C.1148 0.1151 -3.54 3.6512 C.2 4 14.0000 C.49558E-C2 C.254 C.210 3.21 3.65128 C.2 7.7 3.5126 3.6108 C.2 7.7 3.5128 3.55825 C.2 3.57825 C.2 3.57825 C.2 2.2 7 3.57825 C.2 2.2 7 3.57825 C.2 2.2 3.5735	TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.60007-04)*SQ PH RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.60007-04)*SQ PH RT(X) 1) VE ANION CCN PSP N CALC PSP PH RT(X) 2 4.0000 0.201735-02 0.107 0.402 3.6615 0.20 3 5.0000 0.201735-02 0.107 0.49 3.6615 0.20 4 6.0000 0.201735-02 0.1127 0.1130 1.544 3.6615 0.22 4 6.0000 0.2432755-02 0.217 0.210 1.51 -3.56 3.6615 0.22 4 6.0000 0.432755-02 0.2217 0.213 3.6108 0.22 5 10.000 0.4667790-02 0.224 0.224 0.245 3.6108 0.22 5 14.000 0.6667790-02 0.224 0.265 -2.75 3.5785 0.227 5 14.000 0.6667790-02 0.2367 0.2367 2.27 3.5785 0.2 7 14.000 0.6667790-02 0.326 0.2367 2.27 3.5785 0.2 1<	RATIC CENC. = 0.0000 C = 0.000 C	2E-03 0.25568E-03	26-	0.2557	3.5757	-0-28	C.695	ь: Э С	075-01	1 () - C	50.000	17
I) VE AMIEN OF E SXE N CALC REFTR PH K I) VE AMIEN OF E SXE N CALC REFTR PH K I) VE AMIEN OF E SXE N CALC REFTR PH K I) VE AMIEN OF E SXE N CALC REFTR PH K I) SHOOO C.15515F-C2 C.100 C.264538E-C2 C.1107 1.54 3.6615 C.27 II SHOOO C.475558E-C2 C.1137 L.54 3.6203 C.27 II SHOOO C.42558E-C2 C.146 O.1511 -3.56 3.6203 C.27 II SHOOO C.4375C1-C2 C.214 C.224 C.210 3.21 3.6108 C.27 III SHOOO C.46776C1-C2 C.224 C.224 C.227 3.5886 C.27 III 20.000 C.466376C1-C2 C.326 -2.27 3.5785 C.227 3.5785 C.227 III 20.000 C.444418-C2 C.3367 2.27	TRAIGHT LINF "CUNTION-Y= 0.20007-03+(-0.600007-04)*SQ PH RT(X) I) VE ANION CCN E \$2000 C.254 C.254 C.264 -0.20 3.6615 C.2 2 4.000 C.255582-C2 C.1024 C.264 -0.20 3.6615 C.2 3 5.000 C.25582-C2 C.1127 C.130 1.54 3.6615 C.2 3 5.000 C.25582-C2 C.132 C.130 1.54 3.6615 C.2 4 6.000 C.25582-C2 C.132 C.130 1.54 3.6615 C.2 4 6.000 C.49000 C.49000 C.49000 C.49000 3.66108 0.2 4 12.000 C.49000 C.49000 C.49000 3.65000 0.2	RATIC CENT. = 0.00000 CCNC. CCCC. CCCC. CCCC. CCCC. RATIC CENT. = 1.00000 CCNC. CCCC. CCCC. CCCC. CCCC. STRAIGHT LINF CONTIENTE = 1.00000 CCNC. CCCC. CCCC. CCCC. I 2.000 C.15515F-C2 C.004 CCNC. CCCC. CCCC. I 2.000 C.15515F-C2 C.004 CCNC. CCCC. CCCCC. I 2.000 C.15515F-C2 C.004 CCNC. CCCC. CCCCC. CCCCC. I 2.000 C.15515F-C2 C.004 CCCA. CCCA. CCCCC. CCCCC. I 2.000 C.15515F-C2 C.107 N.CALC. CCCA. CCCA. CCCCC. CCCCC. I 2.000 C.15515F-C2 C.1120 1.54 3.6615 C.20 I 12.000 C.426558C-C2 C.217 C.210 3.21 3.6108 0.22 I 12.000 C.46679C-C2 C.224 C.215 -1.36 3.6108 0.22 I 14.000 C.66679C-C2 C.224 C.225 C.275 3.5785 C.27 I 14.000 C.66679C-C2	25E-03 0.25 (01E-03	100	0.2572	3-5735	-1.42	0.553	€. • ភ.	72-01	0.145	35.0000	ló
I) VE #ATEN OFF E: SXC N CALC REFTR PH K I) VE #ATEN OFF E: SXC N CALC REFTR PH K I) VE #ATEN OFF E: SXC N CALC REFTR PH K I) #40000 C.15515FCC2 C.1CR O.107 -0.20 3.6615 C.22 I #40000 C.24795EFC2 C.1107 O.107 -0.49 3.6613 O.22 I #0000 C.24795EFC2 C.1146 O.1101 1.54 3.6200 C.24795EFC2 0.217 C.210 1.54 3.6200 C.24795EFC2 0.217 C.210 1.54 3.6200 C.24795EFC2 0.226 0.226 -1.36 3.64108 0.228 1.51 3.5580C 0.228 1.34151EFC2 0.226 0.226 0.226 0.227 3.5580C 0.227 3.5580C 0.227 3.5580C 0.227 3.5580C 0.227 3.55795 0.227 3.55795 0.227 3.55795 0.227 3.5744 0.227 3.5715 0.227 0.227	TRAIGHT LINF "CUNTION-Y= 0.20007-03+(-0.600007-04)*SQ PH RT(X) T) VE ANION CCN E. SXP N CALC REPOR PH K 1) VE ANION CCN E. SXP N CALC REPOR PH K 2 4.0000 C. 155157-C2 C. 0264 0.107 0.402 3.6615 C.2 3 5.0000 C. 155157-C2 C. 1102 0.107 0.492 3.6615 C.2 3 5.0000 C. 24755787-C2 C. 1122 C. 1130 1.54 3.6515 C.2 4 6.0000 C. 24755787-C2 C. 2146 C. 210 3.21 3.6363 0.2 4 6.0000 C. 432757-C2 C. 2146 C. 210 3.21 3.6408 0.2 4 12.0000 C. 760007-02 C. 224 C. 224 3.6108 0.2 <td>RATIC CENC. = 0.04447 CCNC. STCESS ACID IN METAL RATIC CENT. = 1.00000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STGESCE CC. 10</td> <td>84E-03 0.25/96E-03</td> <td>848-</td> <td>C.257</td> <td>3.5725</td> <td>C.7C</td> <td>C., 5 C S</td> <td>0.511</td> <td>528-01</td> <td>C • 1 42</td> <td>30.000</td> <td>15</td>	RATIC CENC. = 0.04447 CCNC. STCESS ACID IN METAL RATIC CENT. = 1.00000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STCESS ACID IN METAL FINAL SELLTIEN VELUVE = 10000 CCNC. STGESCE CC. 10	84E-03 0.25/96E-03	848-	C.257	3.5725	C.7C	C., 5 C S	0.511	528-01	C • 1 42	30.000	15
I) VE AMIGN CCF CLEXE N CALC REFTR PH K 1 3.000 C.15515F-C2 C.264 C.264 -0.20 3.6615 C.22 2 4.000 C.2515F-C2 C.108 0.107 1.54 3.6615 C.22 2 4.000 C.254755E-C2 C.1108 0.107 1.54 3.6615 C.22 3 5.000 C.24755E-C2 C.1120 1.54 3.6418 C.22 3 5.000 C.243275E-C2 C.1146 C.1130 1.54 3.6418 C.22 3 5.000 C.43275E-C2 C.2146 C.210 3.21 3.65120 C.22 4 12.000 C.4905F3E-C2 C.224 C.210 3.21 3.590C C.2 4 12.000 C.4979E-C2 C.254 C.265 -C.37 3.5880 C.2 14.000 C.46379E-C2 C.3251 C.397 3.5785 C.2 C.2 2.75 3.5785 <t< td=""><td>TRAIGHT LINF "CUNTION-Y= 0.20007-03+(-0.600007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.60007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.6007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.2007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.2007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-COLORATION-Y= 0.2007-03+(-0.2007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-COLORATION-Y= 0.2007-03+(-0.2007-04)#SQ RT(X) TIBADOC 0.201517350-02 RT(X) RT(X) TIBADOC 0.2015340-02 RT(X) RT(X)</td><td>RATIC CENC. = 0.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS</td><td>348-03 0.258958-03</td><td>348-</td><td>0.258</td><td>3.5718</td><td>3.20</td><td>C (+62</td><td>6.477</td><td>213-01</td><td>0.123.</td><td>26.000</td><td>14</td></t<>	TRAIGHT LINF "CUNTION-Y= 0.20007-03+(-0.600007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.60007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.6007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.2007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.2007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-COLORATION-Y= 0.2007-03+(-0.2007-04)#SQ RT(X) TRAIGHT LINF "CUNTION-COLORATION-Y= 0.2007-03+(-0.2007-04)#SQ RT(X) TIBADOC 0.201517350-02 RT(X) RT(X) TIBADOC 0.2015340-02 RT(X) RT(X)	RATIC CENC. = 0.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 CCNC. SCESS	348-03 0.258958-03	348-	0.258	3.5718	3.20	C (+62	6.477	213-01	0.123.	26.000	14
1) VE AMIGN CFM C SXP N CALC FREDR PH K 1 3.000 C.15515F-C2 C.264 C.C84 -0.20 3.6615 C.2 2 4.000 C.26558E-C2 C.1122 C.1107 1.54 3.6615 C.2 3 5.000 C.26558E-C2 C.1122 C.1107 1.54 3.6615 C.2 3 5.000 C.25558E-C2 C.1132 C.1107 1.54 3.6615 C.2 3 5.000 C.25558E-C2 C.1146 C.1151 -3.54 3.6613 C.2 3 5.000 C.25558E-C2 C.214 C.210 3.21 3.6500 C.2 4 12.000 C.4905340-C2 C.2264 C.210 3.21 3.5900 C.2 4 14.000 C.663793-C2 C.254 C.265 -C.37 3.5785 C.2 18.000 C.853364-C2 C.3271 C.357 3.5785 C.2 C.2 18.000 C.853364-E22 C.3264 C.337 1.86 3.5735 C.2	TRAIGHT LINF "CUNTION-Y= 0.286007-03+(-0.600007-04)*SQ RT(X) RT(X) TRAIGHT LINF "CUNTION-Y= 0.286007-03+(-0.600007-04)*SQ RT(X) RT(X) 1 3.000 C.155157-C2 C.284 C.284 -0.20 3.6615 C.2 2 4.000 C.155157-C2 C.124 C.284 -0.20 3.6615 C.2 3 5.000 C.291737-C2 C.1132 C.1107 1.54 3.6615 C.2 2 4.000 C.2955875-C2 C.1132 C.1130 1.54 3.6613 C.2 3 5.000 C.2955875-C2 C.128 C.1130 1.54 3.6613 C.2 4 6.000 C.4900 C.49000 C.49000 C.490000 C.490000 C.490000 C.490000 C.490000 C.490000 C.2010 3.21 3.5880 C.2	RATIC CENC. = J.C4C577 CCNC. SCENS ACID IN METAL RATIC CENTER VCLUYE = L.C4C57 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE = L.C4C57 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE = L.C4C57 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE = L.C4C57 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE = L.C4C57 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE = L.C4C57 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE = L.C4C57 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE = LC0.051 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE = LC0.051 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE = LC0.051 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE = LC0.051 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE = LC0.051 CCNC. SCENS ACID IN METAL FINAL SELLTIEN VCLUYE =	6CE-03 0.25923E-03	6CE-	0.258	3.5720	3.22	C .: 433	C.452	7301	C.113	24.00C	13
I) VE AMIGN CCF C: SXC N CALC FREDR PH K I) J. 0000 C. 15515F-C2 C. CSA C. CA4 -0.20 3.6615 C. Z I) J. 0000 C. 15515F-C2 C. CSA C. CA4 -0.20 3.6615 C. Z I) J. 0000 C. 15515F-C2 C. 1107 1.54 3.6615 C. Z I) J. 0000 C. 24755FE-C2 C. 1132 C. 1107 1.54 3.6416 C. Z I) J. 0000 C. 42755FE-C2 C. 1146 C. 1107 1.54 3.6416 C. Z I) I. 0000 C. 42475E-C2 C. 1146 C. 1101 3.21 3.65108 C. Z I) II. 0000 C. 4905GA-C102 C. 224 C. 210 3.21 3.58880 C. 2 III. 4000 C. 66376G1-C2 C. 234 C. 324 I. 327 3.58880 C. 2 III. 4000 C. 66376G1-C2 C. 324 C. 324 C. 3256 C. 2	TRAIGHT LINF "CUNTION-Y= 0.20007-03+(-0.600007-04)*SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.20007-03+(-0.600007-04)*SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.20007-04)*SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.60007-04)*SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.2007-04)*SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.2007-04)*SQ RT(X) TRAIGHT LINF "CUNTION-Y= 0.2007-03+(-0.2007-04)*SQ RT(X)	RATIC CENC. = 0.0000 C = 0.0000 C = 0.0000 C CCNC. = 0.0000 C STRAIGHT LINF SQUATION YE = 1.00000 C = 1.00000 C = 1.00000 C = 1.0000 C = 1.00	88E-03 0.2366E-03	-388	0.258	3.5722	3.85	0,013	0.429	175-01	0.104	22.000	12
I) VE AMIGN CFM C SXC N CALC REFTR PH K I 3.000 C.15515F-C2 C.254 C.264 -0.20 3.6615 C.2 I 4.000 C.15515F-C2 C.1107 1.54 3.6615 C.2 I 4.000 C.24755E-C2 C.1107 1.54 3.6615 C.2 I 5.000 C.24755E-C2 C.1132 C.1107 1.54 3.6200 C.2558E-C2 0.151 -3.56 3.6416 0.2 I 10.000 C.490558E-C2 C.126 C.1107 3.51 3.6200 C.2 0.2217 C.210 3.21 3.64168 0.2 I 12.0000 C.490598E-C2 C.224 C.224 C.224 0.228 -2.75 3.5785 0.2 0.2 3.5886 C.2 0.2	TRAIGHT LINF "CUNTION-Y= 0.266007-03+(-0.600007-04)*SQ RT(X) RT(X) I) VE ANION CCN CINESIST-C2 C.26907-03+(-0.60007-04)*SQ PH RT(X) I) VE ANION CCN CINESIST-C2 C.2690 C.165157-C2 C.2690 C.169 C.160 C.100 C.1690 C.165157-C2 C.2694 C.107 C.130 C.146 C.120 C.130 C.154 S.4615 C.2 I SOOO C.2655877-C2 C.1107 C.110 C.151 C.264 S.4000 C.2655877-C2 C.1107 C.130 C.154 S.4615 C.2 I C.000 C.2655877-C2 C.1120 C.130 L.54 S.4616 C.2 S.4000 C.2655877-C2 C.2146 C.151 S.4 S.46108 C.2 I C.000 C.49058877-C2 C.2146 C.210 S.217 C.210 S.4151 S.46108 C.2 S.4108 C.2 S.4108 C.2 I C.000 C.49058877-C2 C.224 C.126 C.220 S.2 S.4151 S.4 S.46108 C.2 S.4108 C.2 I C.4000 C.49058877-C2 C.224 C.224 S.400 S.265 S.575 S.2 C.237 S.46108 C.2 S.4200 C.2 I A.000 C.46053565-C2 C.224 C.224 S.400 S.265 S.2 C.237 S.46108 C.2 S.4200 S.4608 S.2 C.237 S.46108 C.2 I B.000 C.46053565-C2 C.2367 C.2368 S.2 C.237 S.465 C.2 S.427 S.46108 C.2 S.427 S.465 C.2 I B.000 C.46053565-C2 C.367 C.3598 S.2 C.237 S.465 C.2 S.414 C.2 S.414 C.2 I B.000 C.46053565-C2 C.367 C.3598 S.467 C.2598 S.467 C.2 C.357 S.444 C.2 S.414 C.2	BUFFER SALT CENC. = 0.04447 CLNC. OF FAILE IN WEITA RATID CF TFS VK0H TJ VP = 1.00000 = 100000 CCNC. SXCESS ACID IN META FINAL SELLTIEN VELUVE = 100000 = 100000 PTIMAL SELLTIEN VELUVE = 100000 PTIMAL SELLTIEN VELUVE = 100000 STRAIGHT LINF SQUATTEN YE = 0.225007-03+(-0.4000000-04)450 PTIMAL SELLTIEN VELUVE = 100000 PTIMAL SELLTIEN VELUVE = 100000 PTIMAL SELLTIEN VELUVE = 100000 1 3.000 C.155157-02 C.254 C.444 PH KI 1 3.000 C.155157-02 C.254 C.444 PH KI 2 4.000 0.247555800-22 C.1120 0.107 0.459 3.6615 C.20 3 5.0000 C.4247555800-22 C.1122 C.1130 1.54 3.6108 0.22 4 6.0000 C.43275500-22 C.217 C.210 3.21 3.5880 0.22 4 6.10000 C.4905919-02 C.254 C.265 -C.37 3.5880 0.22 5 14.0000 C.480592540-22 C.254 C.255 -2.75 3.5765 0.22 9 14.0000 C.48059264-02	16E-U3 U.25954E-U3	165-	0.250	3.5735	1.96	5.347	0.364	それをという	0.043.	20.000	11
I) VE #ATEN OF E SXE N CALC REFOR PH K I 3.000 C.15515F-C2 C.254 C.264 -0.20 3.6615 C.2 I 4.000 C.26515F-C2 C.128 0.107 -0.20 3.6615 C.2 I 4.000 C.270173F-C2 C.1107 0.449 3.6615 C.2 I 5.000 C.26558F-C2 C.1130 1.54 3.6200 C.2 I 10.000 C.26558F-C2 C.128 C.151 -3.56 3.6108 0.2 I 10.000 C.432755-C2 C.2146 C.2151 -3.56 3.6108 0.2 I 10.000 C.432755-C2 C.224 C.255 -C.37 3.5800 0.2 I 14.000 C.663780-C2 C.220 0.224 C.265 -C.37 3.5795 0.2 I 14.000 C.760000-C1-C2 0.321 C.329 C.57 3.5795 0.2 I 14.000 C.643780-C1-C2 0.224 C.275 3.5795 0.2 0.2	TRAIGHT LINF SQUATION-Y= 0.285007-03+(-0.600007-04)#SQ RT(X) I) VE ANION OCH E.SES007-03+(-0.60007-04)#SQ RT(X) I 3.0000 C.155155-02 C.254 G.264 -0.203 3.6615 G.2 I 3.000 G.2017357-02 G.112 G.1107 -0.49 3.6615 G.2 I 4.0000 G.2355827-02 G.217 G.210 1.51 -3.56 3.6108 0.2 I 1.0000 G.432757-02 G.224 G.224 -1.36 3.5880 G.2 I 1.4000 G.463763-02 G.226 G.225 G.2 G.2 G.2 I 1.4000 G.463763-02 G.226<	BUFFER SALT CENC. = 0.04457 CCNC. OF MARKING OF M	346E-03 0.25994E-03	46E-	0.259	3.5744	2.27	0:358	C.367	367-02	0.853	18.000	10
1) VE AMIGN CCF FL SXP N CALC FRFTR PH K 1 3.000 C.15515F-C2 C.264 C.C84 -0.20 3.6615 C.2 2 4.000 0.20173F-C2 C.1C8 0.107 0.49 3.6615 C.2 3 5.000 C.25795E-C2 0.132 C.1107 0.49 3.6415 C.2 3 5.000 C.24559F-C2 0.132 C.151 -3.56 3.6408 0.2 4 6.000 C.49059F-C2 0.2146 0.151 -3.56 3.6108 0.2 4 5.000 C.49059F-C2 0.226 0.217 C.210 3.21 3.590C 0.2 4 12.0000 C.49059F-C2 0.226 0.229 -1.36 3.5980 0.2 7 12.0000 C.49059F-C2 0.229 0.290 -1.36 3.59825 C.2 7 12.0000 C.658799-C2 0.290 0.293 0.298 -2.75 3.5795 0.2 8 14.000 C.658799-C2 0.290 0.290 <td>TRAIGHT LINF SQUATION-YE 0.26507-03+(-0.600007-04)#SQ RT(X) T) VE ANTON CONTON YE 0.26507-03+(-0.60007-04)#SQ PH K T 3.0000 C.155155-02 C.254 C.604 -0.20 3.6615 C.2 Z 4.0000 C.2555870-02 C.1120 0.107 0.499 3.6363 0.2 S 5.0000 C.2555870-02 C.1130 1.54 3.64108 0.2 S 5.0000 C.4327570-02 0.217 C.210 3.21 3.64108 0.2 S 10.000 C.49053870-02 0.2240 0.224 1.354 3.5880 0.2 T 12.000 C.6373629-02 0.224 0.254 0.265 -0.37 3.5880 0.2 T 12.000 C.6373799-02 0.230 0.256 -0.375 3.5795 0.2 <</td> <td>BUFFER SALT CENC. = 0.004447 (CENC. OF MATHER SALT CENC. RATIO CF TFS VK0H TJ VP = 1.00000 = 1.00000 CENC. SECESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 = 1.00000 CENC. SECESS ACID IN METAL STRAIGHT LINF SECURICALY = 0.2250037-03+(-0.6600001-04)450 PH KI (I) VE ANTON OFF E.SEG037-03+(-0.6600001-04)450 PH KI 2 4.0000 0.2475550-02 0.132 0.107 0.455 3.6615 0.22 3 5.0000 0.4327550-02 0.1217 0.151 -3.54 3.6108 0.22 4 6.10000 0.432751-02 0.2217 0.224 -2.37 3.58300 0.22 7 12.0000 0.4532621-02 0.224 0.224 0.265 -0.37 3.5825 0.22 4 4.0000 0.663799-02</td> <td>77E-03 0.25989E-03</td> <td>977E-</td> <td>0.259</td> <td>3.5765</td> <td>0.57</td> <td>C.329</td> <td>0.321</td> <td>cC∃-C2</td> <td>C.760</td> <td>16.000</td> <td>-0</td>	TRAIGHT LINF SQUATION-YE 0.26507-03+(-0.600007-04)#SQ RT(X) T) VE ANTON CONTON YE 0.26507-03+(-0.60007-04)#SQ PH K T 3.0000 C.155155-02 C.254 C.604 -0.20 3.6615 C.2 Z 4.0000 C.2555870-02 C.1120 0.107 0.499 3.6363 0.2 S 5.0000 C.2555870-02 C.1130 1.54 3.64108 0.2 S 5.0000 C.4327570-02 0.217 C.210 3.21 3.64108 0.2 S 10.000 C.49053870-02 0.2240 0.224 1.354 3.5880 0.2 T 12.000 C.6373629-02 0.224 0.254 0.265 -0.37 3.5880 0.2 T 12.000 C.6373799-02 0.230 0.256 -0.375 3.5795 0.2 <	BUFFER SALT CENC. = 0.004447 (CENC. OF MATHER SALT CENC. RATIO CF TFS VK0H TJ VP = 1.00000 = 1.00000 CENC. SECESS ACID IN METAL FINAL SELLTIEN VELUVE = 1.00000 = 1.00000 CENC. SECESS ACID IN METAL STRAIGHT LINF SECURICALY = 0.2250037-03+(-0.6600001-04)450 PH KI (I) VE ANTON OFF E.SEG037-03+(-0.6600001-04)450 PH KI 2 4.0000 0.2475550-02 0.132 0.107 0.455 3.6615 0.22 3 5.0000 0.4327550-02 0.1217 0.151 -3.54 3.6108 0.22 4 6.10000 0.432751-02 0.2217 0.224 -2.37 3.58300 0.22 7 12.0000 0.4532621-02 0.224 0.224 0.265 -0.37 3.5825 0.22 4 4.0000 0.663799-02	77E-03 0.25989E-03	977E-	0.259	3.5765	0.57	C.329	0.321	cC∃-C2	C.760	16.000	-0
1) VE ANION CONTRUCTION OF AN ONLO PREPR PH K 1) 3.000 C.15515F-C2 C.264 C.C94 -0.20 3.6615 G.2 2 4.000 0.20173F-C2 C.1C8 0.107 0.49 3.6363 G.2 3 5.000 0.224755E-C2 0.132 C.130 1.54 3.6363 C.2 3 5.000 C.2558F-C2 0.132 C.130 1.54 3.6263 C.2 4 6.000 C.2558F-C2 0.2146 0.151 -3.56 3.64168 0.2 5 5.0000 C.43275E-C2 0.2146 0.151 -3.56 3.6408 0.2 5 5.0000 C.43275E-C2 0.226 0.229 -1.36 3.5880 0.2 6 12.0000 C.5739C(2-C2 0.226 0.229 -1.36 3.5880 0.2 7 12.0000 C.5739C(2-C2 C.254 C.265 -C.37 3.5925 C.2	TRAIGHT LINF "CUNTION-YE 3.265037-03+(-0.600007-04)*SQ RT(X) I) VE ANION CCN E.5x8 N CALC ERROR PH K I) VE ANION CCN E.5x8 N CALC ERROR PH K I) VE ANION CCN E.5x8 N CALC ERROR PH K I) 3.000 C.155157-C2 C.104 0.400 3.6615 C.2 2 4.000 0.201737-C2 C.112 0.107 0.45 3.6615 C.2 3 5.000 C.247558-C2 0.1146 0.1151 -3.56 3.6108 0.2 4 6.000 C.490000 C.2260 0.226 0.220 3.21 3.5900 0.2 5 5.000 C.490000 C.490000 0.217 C.210 3.21 3.5880 0.2 5 10.000 C.490000 C.490000 0.226 0.226 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 </td <td>BUFFER SALT CENC. = 0.04447 (CNC. OF MATHER FUNAL SELLTIEN VELLUVE = 1.00000 CONC. SKEESS ACID IN METAL FEINAL SELLTIEN VELLUVE = 1.00000 CONC. SKEESS ACID IN METAL FEINAL SELLTIEN VE ANTON OF MATHER STRAIGHT LINF SEDUCTOR (1) VE ANTON OF MATHER SECONDERS) CONC. SKEESS ACID IN METAL FEINAL SELLTIEN VE ANTON OF MATHER SECONDERS) RT(X) (1) VE ANTON OF MATHER SECONDERS N CALC FERDR PH KI 1 3.000 C. 15515F-C2 C. 264 C. 284 -0.20 2 4.000 0.20173F-C2 C. 100 0.107 0.459 3.6615 0.20 2 4.000 0.24755E-C2 C. 126 C. 130 1.54 3.6200 0.24755E-C2 0.1217 0.459 3.6615 0.22 3 5.000 0.4400597-C2 C. 146 C. 151 -3.56 3.6200 0.22 4 6.0000 0.4400597-C2 C. 146 C. 151 -3.56 3.6108 0.22 4 10.0000 0.4327951-C2 C. 216 C. 210 3.21 3.5880 0.22 5 10.0000 0.4327951-C2 C. 226 C. 226 C. 255 -0.37 3.5825 0.22 7 12.0000 0.573601-C2 C. 226 C. 265 -0.37 3.5825 C. 20</td> <td>005E-03 U.25946E-03</td> <td>0092-</td> <td>0.26</td> <td>3.5795</td> <td>-2.75</td> <td>0,298</td> <td>0-2-0</td> <td>23-562</td> <td>0.653</td> <td>14.000</td> <td>JU,</td>	BUFFER SALT CENC. = 0.04447 (CNC. OF MATHER FUNAL SELLTIEN VELLUVE = 1.00000 CONC. SKEESS ACID IN METAL FEINAL SELLTIEN VELLUVE = 1.00000 CONC. SKEESS ACID IN METAL FEINAL SELLTIEN VE ANTON OF MATHER STRAIGHT LINF SEDUCTOR (1) VE ANTON OF MATHER SECONDERS) CONC. SKEESS ACID IN METAL FEINAL SELLTIEN VE ANTON OF MATHER SECONDERS) RT(X) (1) VE ANTON OF MATHER SECONDERS N CALC FERDR PH KI 1 3.000 C. 15515F-C2 C. 264 C. 284 -0.20 2 4.000 0.20173F-C2 C. 100 0.107 0.459 3.6615 0.20 2 4.000 0.24755E-C2 C. 126 C. 130 1.54 3.6200 0.24755E-C2 0.1217 0.459 3.6615 0.22 3 5.000 0.4400597-C2 C. 146 C. 151 -3.56 3.6200 0.22 4 6.0000 0.4400597-C2 C. 146 C. 151 -3.56 3.6108 0.22 4 10.0000 0.4327951-C2 C. 216 C. 210 3.21 3.5880 0.22 5 10.0000 0.4327951-C2 C. 226 C. 226 C. 255 -0.37 3.5825 0.22 7 12.0000 0.573601-C2 C. 226 C. 265 -0.37 3.5825 C. 20	005E-03 U.25946E-03	0092-	0.26	3.5795	-2.75	0,298	0-2-0	23-562	0.653	14.000	JU,
I) VE ANIGN CCF CL SXP N CALC FRF9R PH K 1 3.000 C.15515F-C2 C.264 C.C94 -0.20 3.6615 C.2 2 4.000 C.15515F-C2 C.1C9 0.107 0.459 3.6615 C.2 3 5.000 C.25958E-C2 C.1C9 0.1107 1.54 3.6363 C.2 3 5.000 C.25958E-C2 C.1146 C.151 -3.56 3.6108 0.2 4 6.000 C.43275E-C2 C.1146 C.151 -3.56 3.6108 0.2 5 5.000 C.43275E-C2 C.217 C.210 3.21 3.590C 0.2 5 10.000 C.49055E-C2 0.226 0.229 -1.36 3.5880 0.2	TRAIGHT LINF COUNTION-YE 3.265037-03+(-0.600007-04)*SQ RT(X) I) VE ANION CONTION-YE 3.265037-03+(-0.600007-04)*SQ RT(X) I) VE ANION CONTION-YE 3.265037-03+(-0.600007-04)*SQ RT(X) I) VE ANION CONTION-YE 3.265037-03+(-0.60007-04)*SQ RT(X) I) VE ANION CONTION-YE 3.265037-03+(-0.60007-04)*SQ RT(X) I) 3.000 C.155157-02 C.254 C.204 -0.203 I 3.000 C.155157-02 C.127 C.213 3.6615 C.2 I 3.000 C.2475557-02 C.1130 1.54 3.6200 C.2 I 5.000 C.4327575-02 C.217 C.210 3.21 3.590C 0.2 I 10.000 C.490000-0.226 0.226 0.229 -1.36 3.5880 0.2	BUFFER SALT CENC. = 0.00000 C CENC. OF MARKED NOT	0452-03 0.250378-03	0458-	C.26	3.5825	-C.37	0,265	C . 254	SC 3-C 2	6.213	12.000	7
I) VE ANIGN CFM C: SXC N CALC REFOR PH K 1 3.000 C.15515F-C2 C.254 C.C84 -0.20 3.6615 C.2 2 4.000 C.15515F-C2 C.254 C.C84 -0.20 3.6615 C.2 3 5.000 C.2755F-C2 C.128 C.130 1.54 3.6423 0.2 4 6.000 C.2455F-C2 C.1128 C.130 1.54 3.6408 0.2 4 6.000 C.2455F-C2 C.146 0.151 -3.56 3.6108 0.2 5 5.000 C.4327F-C2 C.217 C.210 3.21 3.5900C 0.2	TRAIGHT LINF "CUNTION-Y= 0.20007-03+(-0.600007-04)*SQ RT(X) RT(X) T) VE ANION CON CONTON-Y= 0.2007-03+(-0.600007-04)*SQ RT(X) I) VE ANION CON CONTON-Y= 0.2007-03+(-0.600007-04)*SQ RT(X) I) VE ANION CON CONTON-Y= 0.2007-03+(-0.600007-04)*SQ RT(X) I) 3.000 C.155157-02 C.2007-03+(-0.60007-04)*SQ RT(X) I) 3.000 C.155157-02 C.1128 C.1130 1.54 I) 3.000 C.432757-02 C.2146 0.151 -3.56 3.6108 0.2 I) 3.000 C.432757-02 C.217 C.210 3.21 3.5900 0.2	BUFFER SALT CENC. = 0.04457 CLNC. OF MATHER SALT CENC. RATID CF TF2 VK0H TJ VP = 1.00000 CCNC. SXCESS ACID IN METAL FINAL SELLTIEN VELUV? = 100000 CCNC. SXCESS ACID IN METAL STRAIGHT LINF SQUATIEN-Y= 0.265007-03+(-0.6000007-04)450 RT(X) (I) VE ANION OF FI S2507-03+(-0.600007-04)450 RT(X) 1 3.0000 C.150157-02 C.0264 -0.20 3.6615 C.20 2 4.0000 0.201737-02 C.0264 0.107 0.459 3.6615 0.20 3 5.0000 C.295987-02 C.120 0.107 0.459 3.6200 C.22 4 6.000 C.295987-02 C.120 0.151 -3.56 3.6108 0.22 5 5.000 C.432757-02 0.217 C.210 3.21 3.5900 0.21	0845-03 0.260506-03	0845-	C.26	3.5880	-1.36	0.229	0.224	20	094 ~ "0	10.000	¢.
I) VE AKIEN OFF F: SXP N CALC RPROR PH K 1 3.000 C.15515F-C2 C.254 C.204 -0.20 3.6615 C.2 2 4.000 C.21735F-C2 C.107 0.445 3.6615 C.2 3 5.000 C.24755F-C2 C.1152 C.130 1.54 3.6615 C.2 4 6.000 C.24755F-C2 C.1152 C.1151 -3.56 3.6108 0.2	TRAIGHT LINF SQUATION-YE 3.265037-03+(-0.400007-04)*SQ RT(X) I) VE ANION CON SISSIST-02 NCALC RESDR PH K I) VE ANION CON SISSIST-02 C.254 C.0264 -0.20 3.6615 C.2 I 3.000 C.155157-02 C.108 0.107 0.49 3.6615 C.2 I 3.000 C.201737-02 C.108 0.107 0.49 3.6615 C.2 I 3.000 C.201737-02 C.1128 C.130 1.54 3.6363 0.2 I 3.000 C.265582-02 0.1132 C.130 1.54 3.6200 C.2 I 4.000 C.265582-02 0.146 0.151 -3.56 3.6108 0.2	BUFFER SALT CENC. = 0.04447 (CLNC. OF MATHER SALT CENC. RATID CF THE VK0H TJ VP = 1.00000 CCNC. SXCESS ACID IN METAL FINAL SELLTIEN VELUV ^e = 100.000 CCNC. SXCESS ACID IN METAL STRAIGHT LINF SQUATIEN-Y= 0.265007-03+(-0.460000-04)450 RT(X) (I) VE ANION OF C.265007-03+(-0.460000-04)450 RT(X) 1 3.000 C.15515F-C2 C.264 -0.20 3.6615 C.20 2 4.000 0.20173F-C2 C.100 0.107 0.459 3.6363 0.20 3 5.0000 0.2247955E-C2 0.1122 C.1130 1.54 3.6200 C.22 3 5.0000 0.224795E-C2 0.1122 C.1130 1.54 3.6108 0.22 4 6.0000 6.269597-C2 0.1146 0.151 -3.56 3.6108 0.21	51C5E-03 0.26185E-03	51C5E-	0.26	3.590C	3.21	C,210	0.217	22-25	0.432	5 000	Jı.
I) VE ANIGN JCH F: FXP N CALC FERDR PH K 1 3.000 C.15515F-C2 C.254 C.C84 -0.20 3.6615 C.2 2 4.000 C.15515F-C2 C.1C8 0.107 0.459 3.6363 0.2 2 4.000 C.20173F-C2 C.1C8 0.107 0.459 3.6363 0.2 3 5.000 C.24755E-C2 0.132 C.130 1.54 3.6200 C.2	TRAIGHT LINE COUNTION-Y= 0.200001-03+(-0.600001-04)*SQ RT(X) T) VE ANTON OCH E:SXE N CALC REPOR PH K 1 3.0000 C.155155-C2 C.0204 C.034(-0.60001-04)*SQ PH K 2 4.000 0.201735-C2 C.100 0.107 0.499 3.6615 C.2 3 5.0000 0.201735-C2 C.1122 C.130 1.54 3.6200 C.2 3 5.0000 0.247555-02 0.132 C.130 1.54 3.6200 C.2	BUFFER SALT CENC. = 0.04457 CLNC. OF METHELING SUCH TO YELL RATIO CF THE VKOH TO YH = 1.00000 CCNC. FXCESS ACID IN META FINAL SELLTIEN VELUYH = 1.00000 CCNC. FXCESS ACID IN META STRAIGHT LINF FQUATIEN-YH D.255007-03+(-0.460000-04)#SQ PT(X) STRAIGHT LINF FQUATIEN-YH D.255007-03+(-0.460000-04)#SQ PT(X) (I) VE ANTON CENT FLEXH N CALC FPROR 1 3.000 C.15915F-C2 C.2644 2 4.000 0.20173F-C2 C.107 0.459 3 5.000 0.247555-C2 0.1122 C.130 1.54 3 5.000 0.247555-C2 0.1122 C.130 1.54 3.6200	617 <u>4</u> E-03 0.26C80E-03	61748-	0.2	3.6108	-3.5E	0.151	C.146	591-62	C.295	6 000	4
I) VE ANIGN CCF CLER N CALC RENDR PH K 1 3.000 C.15515E-C2 C.284 C.084 -0.20 3.6615 C.2 2 4.000 C.15515E-C2 C.104 0.107 0.455 3.6363 0.2 2 4.000 C.20173E-C2 C.104 0.107 0.455 3.6363 0.2	TMAL SELFTEN VELUY® = 100.00 TRAIGHT LINF GUATION-VE 0.285007-03+(-0.600007-04)≛SQ BT(X) I) VE &ATON CCF DISXE NICALC FREDR PH K 1 3.000 C.155155-C2 C.108 0.107 0.49 3.63615 C.2 2 4.000 0.201735-C2 C.108 0.107 0.49 3.6363 0.2	BUFFER SALT CENC. = 0.00000 CENC. OF METAL FINAL SELFTER VEHTS RATIO CF THE VEHTS = 1.00000 CENC. FINAL SELFTER VEHTS STRAIGHT LINF MEDATION-Y= 1.00000 CENC. FINAL SELFTER VEHTS (1) VE ANION OF FINAL SELFTER VEHTS 1 2.0000 CENC. FINAL SELFTER VEHTS FINAL SELFTER VEHTS 2 4.0000 CENT FINAL SELFTER VEHTS 2 4.0000 0.201737-C2 CENCH OF CENCH OF 2 4.0000 0.201737-C2 CENCH OF 0.107 0.459 3.6363	6201E-03 0.26243E-03	62015-	C.2	3-6200	1.54	C.130	0.132	355-02	0.247	5 OCC	ا دن
1) VE ANIGN CCM CLUS V CALC FREDR PH K 1 2.000 C.15515F-C2 C.264 C.CALC FREDR PH K	TMAL SELFTEN VELUV® = 100.00 TRAIGHT LINF GEUATION-VE 0.285007-00+(-0.600007-04)≛SQ BT(X) I) VE &ATON CCF D.5XP N CALC FRRDR PH K 1 3.000 C.155155-C2 C.0264 C.084 -0.20 3.6615 C.2	BUFFER SALT CENC. = 0.00444 ft CENC. OF METAL RATIO CETTER VALUE = 1.00000 center ft CENC. Excess Acid in Metal STRAIGHT LINF EQUATION-Y= 0.0444 ft CENC. Excess Acid in Metal STRAIGHT LINF EQUATION-Y= 0.0444 ft CENC. Excess Acid in Metal (I) VE ANION CONTENTION-Y= N CALC Excess Acid in Metal (I) VE ANION CONTENTION-Y= N CALC Excess Acid in Metal (I) VE ANION CONTENTION-Y= N CALC Excess Acid in Metal (I) VE ANION CONTENTION Excess Acid i	6230E-03 0.26244E-03	62302-	0.2	3-6363	0.49	0.107	C.1C ^B	735-62	0.201	4.000	2
I) VE ANION OCH I SXO NICALC FERDR PH K	TRAL SELFTEN VELUV€ = 100.00 TRAIGHT LINE =QUATION-Y= 0.265007-00+(+0.600000-04)≛SQ RT(X) I) VE ANION OCH DISXE NICALC ERROR PH K	GUPPER SALT CONC. = 0.00000 CONC. TANAN META RATIO CF THE VKOH TA VP = 1.000000 CONC. TACESS ACID IN META FINAL SOLUTION VCLUY® = 1.000000 CONC. TACESS ACID IN META STRAIGHT LINP TOUNTION-Y= 0.200001-03+(-0.00000-04)*SQ PT(X) STRAIGHT LINP TOUNTION-Y= 0.200001-03+(-0.00000-04)*SQ PT(X) (1) VE #ATEON OFF F15XP	6264E-03 0.26258E-03	62648-	C • 2	3.6615	-0,20	C.C.44	C.C84	157-02	C• 155	3.000	-
	TRAIGHT LINE #DUATION+Y= 0+269007-00+(+0+500007-04)⊁SQ RT(X) TRAIGHT LINE #DUATION+Y= 0+269007-00+(+0+500007-04)⊁SQ RT(X)	BUFFER SALT CENC: = J.044597	A LSED KA THEO	A LSED	~	Ыd	80 a 3 a	N CALC	n ixe	1001	27.10	< (F	[])
ATIO CF THE VKOH TO VP = 1.00000 CONC. EXCESS ACID IN METALICA SOL.	UFFER ACID CONC. = 0.05020 VOLUME OF METAL ICN SCL.		N = 0.1000 = 1.2901	2 0		TRATE CON	VIC STRENG		0.10017		CHATRA	PASE CON	9180
ATTO CF THE VKOH TO VP = 1.00000 ATTO CF THE VKOH TO VP = 1.00000 CCNC = 5XCESS ACID IN METAL	AIG ACID CONCENTRATION = 0.10017 AIG PASE CONCENTRATION = 0.44997 UFFER ACID CONCENTRATION = 0.5020 UFFER ACID CONCENT	RAIG ACTD CONCENTRATION = 0.10017 IEMIC STRENGTH OF SCLUTION RAIG PASE CONCENTRATION = 0.04997 PCTASSIUM NITRATE CONC.		,									

τ8τ

NO POINTS FLIMINATED

THE NUMBER OF ITLESTICAS #

4

 $S_{\rm M} = 0.7631E-01$

•

ŝ

0.32685 C3

********TWJ PARANETER PRJGRAM USFD*********

STABILITY CONSTANT OF CO2-CHIE& FUN 2 MAY 5 1972

	FINA	RATI	PUFF	BUFF	C316	
50	L SOLUTIC		ER SALT C	ER ACID C	EASE CON	ACTD CCN
	N VCLUVE =	VKCH TU VS =	CNC • =		CENTERTION =	CFNTGATICN =
	100.00	1.00000	0.C4582	0.C5100	0.C45¤2	J-10082
	3+(-0.600	с с	сс С	0	PO	10
aUcci	co=-041*S3	NC. EXCESS A	NC. OF META	TLAN JU EWDI	TASSIUM NITE	NIC STRENGTH
	RT(X)	ACID IN METAL	ICN SOL.	AL ICA SCL.	RATE CONC.	- OF SCLUTION
=		ij	11	H	U	n
כ		0.0	0.09979	2.00	1.2901	0.1000
×			2			
T H						

	379 (†)1	*****	62828 35437	C2 1. 02 1.	0.4249E 0.22615	C+140H 33 0+4C5H 02	3282	× 1 • 6	49F 02 (9] 07	0.42 0.ct		
	((I+1)	*(1)/*	K(1)	LCG	K(1)	SIGMACI	NUTA(I)	LLC B	TA(I)	BE	(1)	
047.0	0.234806-03	50-3064	0.25	3.5640	-0.23	C.923	C.921	2 79-C L	0.283	C.000	3	ŝ
				3.0625	-0.48	C. 316	C.612	632-C1	C°532	C.000	22	2
			0.25	3.561/	~1.0A	0.6c2	0.635	367-01	0.158	-C.000	21 4	N
			5.0°	3.5610	1.03	C. C.22	0.t29	572-C1	C.164	5.000	0	2
167.0	0.25310t-03	7076-03	0.25	3,5613	1.46	0.548	0.556	107-01	0.141	000	6	-
0.004	0.258202103	11E-03	0.25	3.5620	C.43	C.518	C.520	8601	C.131	8.0CC	60	
0.432	0.25834E-03	8362-03	0.25	3.5627	-0.09	C.486	C-496	1 J - 135	C.122	6.000	-	
6.499	0.258822-03	Re 22-03	0.25	3.5631	0-08	C.4.53	0.459	175-01	6 11° 0	4.000	6	
6.J0J	0.25528E-03	889E-03	0.25	3.5638	1.89	0.420	C.428	8C7-C1	C.1C3	2.000	ິ ຫ	н
0.002	0.229516-03	IST 7E-03	C-25	3.5652	1.61	C.386	C-392	437-62	C.¢45.	0000	4	
169.9	0.259628-03	5946E-03	0.25	3.5672	C.79	0.351	0.354	295-02	0.653	8.000	ω 1	
0.100	0-259886-03	5772-03	0.25	3.5696	C.53	C.315	C.317	248-02	C.760	6.000	2	
878 • 0	0.260166-03	,009E-03	C.26	3.5728	1: • C	0.279	C.2PC	412-02	C. 668.	4.000		щ,
768.0	0.260536-03	045E-03	0.26	3.5771	C.38	C.242	0.243	928-02	C.575	2.000	0	,
1 C F • J	0.260886-03	-CA3E-03	0.26	3.5833	0.25	C.704	0.204	513-C2	C.443	C.000	ں ا	
0.404		1036-03	0.26	3.5874	J• 31	C.195	0.185	247-02	0.437.	c.000	α.	
1.020	0.261418-03	125E-03	0.26	3.5924	J.72	C.165	0.167	850-02	C.3cC	8.000	7	
2002	0-261502-03	148E-03	0.26	3.5991	60°C	C.146	C.146	7002	C•344	7.000	6	
7.084	0.26167E-03	1722-03	0.26	3.6077	-3.22	C.127	0.126	367-02	0.258	6.000	υ.	
7.110	0.261972-03	199E-03	0.26	3.6192	-0.10	C.1C7	C.1C7	7-2-62	0.251	5.000	4	
1.148	0.262016-03	,228E-03	0.26	3.6360	-1.23	0.097	0.C36	1 ci. – C 2	0.205	4.000	U	
1.180	0.26280E-03	262E-03	0.26	3.6609	0.33 3	0.067	C.063	782-02	0.157	3.0000	2	
7.213	0.262988-03	3012-03	0.26	3.7059	-0-12	C • C 4 7	C.C47	\$¢ - C2	C.IC9	2.000	1	
VCL KNC3	KA THED	USED	κA	Рч	22208	N CALC	N IEXE	A CCM	71 47	٧B	1)	~
				Ţ				11 1 1 1			IKAIO	v

NO POINTS ELIVENAT "E

THE NUMBER OF ITTOATIONS -

SMIN = 0.23122-01

4

.

XIII. APPENDIX E:

FORMATION CONSTANTS OF BIVALENT TRANSITION METAL α, β -DIHYDROXY- β -METHYLISOBUTYRATE COMPLEXES

********THJ PARAMETER PROGRAM USED*********

STABILITY CONSTENT OF CO2-CHMIRE RUN 2 JANLARY 14 1972

DRIG ACID CONCENTRATION	H 11	0.CSF17 ICNIC STRENGTH OF SCLUT 5.C4450 POTASSIUM NITRATE CONC.	ICN		0.1000
BURSER ACID CONC.	11	0.04867 VCLUME DE METAL ION SOL	•	I	2.00
BUFFER SALT CONC.	н	Q.C4950 CENC. OF METAL ICN SOL	•	u	0.10035
PATIO CF THE VKCH TO VE	н	1.CC000 CENC. EXCESS ACID IN ME	TAL	0	0.0
FINAL SCLUTICN VELUMS STRAIGHT LINE EQUATION-Y	11 11	100.CU 9.309357-03+(+::	-		

	**	2 • 2	59001 23587	02 1. C2 1.	0.3RG1E 0.1721E	C•290☆ 00 C•494% 02	100CC	×1 ₽ • • 20 00	<pre>c11 C2 c7℃ O3</pre>	9.9.0 9.0 9.0 9.0 9.0	
	([+])	K(I)/K	; K(I)	LCC	K(I)	SIGMA(I)	TÉ(1)	۲.C э.	TA(])) PE	(1
6.041	0.296732-03	9638E-03	C• 2	3.5215	1.77	0,377	0.587	38c-C1	0.174	37.000	20
6.110	0.296942-03	9670E-03	0.2	3.5217	1.20	0,552	0.559	058-01	0.165	35.000	19
£.213	0.297408-03	97212-03	0.2	3.5220	0.94	0,513	C.518	012-01	C.151	32.000	18
6.281	0.29767E-03	9756E-03	0.2	3.5224	J.54	C,487	0-489	692-01	0.141	30.000	17
6.349	0.29805E-03	9792E-03	0.2	3.5228	0.63	0.459	0.462	335-01	0.132	28.000	16
6-417	0.298192-03	9829 E -03	G.2	3.5237	-0.46	C,431	C.429	CB2-C1	C.123	26.000	15
6.484	0.29843E-03	98685-03	0.2	3.5247	-1.15	0.403	0.355	7¢2-C1	0.113	24.000	14
6.552	0.29905E-03	9909E-03	0.2	3.5255	-C.17	0,373	C.373	407-01	C.104	22.000	13
6.619	0.295808-03	9951E-03	0.2	3.5265	1.32	C.343	0.342	20-200	0.50	20.000	12
6.685	0.300235-03	9996E-03	0.2	3.5284	1.26	C.312	0.316	147-02	0.857	18.000	11
6.751	C.30C71E-C3	0042E-03	C•3	3.5309	1.30	0,291	0.285	312-02	C.764	16.000	10
6.817	0.301292-03	0C92E-03	0.3	3.5342	1.64	0.249	C.253	428-02	0.671	14.000	Ð
6.883	0.302068-03	0146E-03	0.3	3.5386	2.68	C.216	C-222	365-02	C.57F	12.000	a
6.948	0.302312-03	02036-03	0.3	3.5457	1.26	C. 183	C.186	22	0.486	10.000	7
6.960	0.302612-03	0234E-03	0•3	3.5502	1.20	C.,166	0.169	875-02	C.433	000.5	б
7.013	0.302675-03	02662-03	6 ° 0	3.5561	0.04	0-150	0.150	773-62	665.0	000.8	თ
7.045	0.30292E-03	03015-03	0.3	3.5633	-0.36	C.132	0.132	373-02	C.347	7.000	4
7.077	0.303002-03	0338E-03	0.3	3.5729	-1.63	0.115	0.113	02=-C2	0.301	6.000	ω
7.110	0-30363E-03	0378E-03	0.3	3.5852	-0.65	0.097	0.047	20-290	0.254	5.000	2
7.142	0.304372-03	0423E-03	0.3	3.6028	C-60	C-C90	C.CEC	2 J – E 5 8	0.206	4.00C	
VOL KND3	KA THEO	A USED	7	PI	A U A Y	N CALC	N HXP	2 002	AN IC	۷B	(1)

ND POINTS ELIMINATED

SMIN = C.96342-C2

THE NUMBER OF ITERITICUE =

STABILITY CONSTANT OF NIZ-DEMIRA RUN 3 APRIL 21 1972

CRIG ACID CONCENTRATION	=	0.10041	IJNIC	STRE	NGTH	OF	SOLUTION	=	0.1000
ORIG BASE CONCENTRATION	Ξ	0.04981	POTASS	IUM	NITR	ATE	CONC.	=	1.2901
BUFFER ACID CONC.	=	0.05060	VOLUME	ΟF	META	L IC	N SOL.	=	2.00
BUFFER SALT CONC.	=	0.04981	CCNC.	3F	META	L IC	N SOL.	Ξ	0.09664
RATIC OF THE VECH TO VE	-	1.00000	CONC.	EXCE	SS A	CID	IN METAL	=	0.0
FINAL SCLUTICN VOLUME	-	100.00							
STRAIGHT LINE POLATION-Y	=	0.305939-03+(-0.5	521576-	C3)*	۲X				

(1)	VB	ANICA	V CCN	K Exp	N CALC	FRROR	РН	KA USED	KA THEO	VOL KNO3
1	3.000	0.1556	807-02	0.096	C.C96	0.01	3.6045	0.305128-0	0.305126-03	7.202
2	4.000	0.2020	075-02	0.123	C.123	-0.05	3.5762	0.30488E-0	0.30486E-03	7.172
3	5.000	0.2479	°6≣-C2	0.14 ^c	0.149	-0.06	3.5578	0.30464E-0	0.30461E-03	7.142
4	6.000	0.2935	565-02	0.175	0.175	0.22	3.5448	0.30440E-0	0.30447E-03	7.111
5	7.000	0.3392	202-02	C.20C	0.200	-0.03	3.5354	0.30416E-0	0.30415E-03	7.081
6	8.000	0.3846	eere − C 2	0.225	C.225	0.11	3.5281	0.30392E-0	0.30396E-03	7.050
7	5.000	0.4302	224-02	0.249	0.249	-0.09	3.5225	0.303698-0	0.303652-03	7.020
8	10.000	0.4757	55-02	C.273	C.273	-0.20	3.5180	0.30345E-0	0.30338E-03	6.989
9	12.000	0.5666	55-C2	6.320	0.320	-0.04	3.5112	0.302976-0	0.30256E-03	6.927
10	14.000	0.6576	1 - C 2	C.367	C.366	0.06	3.5065	0.30250E-0	0.302525-03	6.864
11	16.000	6.7419	÷3⊁-C2	C.411	C.412	-C.24	3.5033	0.302025-0	0.30195E-03	6.801
12	18.000	0.9395	572-02	0.458	0.456	0.49	3.5006	0.30155£-0	0.301702-03	6.738
13	20.000	0,9307	i47-C2	0.503	C,500	0.58	3.4988	0.301C8E-0	0.30126E-03	6.674
14	22.000	0.1021	95-01	0.549	0.543	C.86	3.4974	0.300602-0	3 0.300875-03	6.609
15	24.000	0.1114	35-01	0.584	C,586	-0.23	3.4969	0.30012E-0	0.30005E-03	6.544
16	26.000	0.1206	CF - C1	0.626	C.528	-C•37	3.4963	0.299645-0	3 0.299532-03	6.479
17	28.000	0.1298	81E-C1	0.665	0.669	-0.70	3.4960	0.29916E-0	3 0.29895E-03	6.413
19	37.000	C.1712	29∃-C1	C.838	0,349	-1.34	3.4961	0.297CCE-0	3 0.29661E-03	6.112
	(I) BET	A(I)	FC6 86	τ <u>Δ(I)</u>	SIGM.1(I)	K(I)	LOG	κ(I) Κ(I)/K(I+1)	
	1 0.640	04F €2	1.80	e42 0	•1045 00	C.64C4E	C2 1.4	80642	3.703	
	2 0.110	75 04	3.04	426 0	.2751: 02	0.17298	02 1.2	23783	0.667	
	3 0.287	15 05	4.45	797 0	•226c 04	0.25925	02 1.4	41371 #***	****	

THE NUMBER OF ITERATIONS = 10 SMIN = 0.1731E-01

NE FEINTS L'UMINATUE

STABILITY CONSTANT OF CU2-DHMIPA RUN L DOTOBER 26 1971

CRIP ACIP CENCENTRATION	1	.C5F7R	ICNIC STRENGTH OF S	CLUTIGN =	0.1000
CRIG PASE CONCENTRATION	0 #	1.C455E	POTASSIUM NITRATE C	CNC. =	1.2901
BUFFER ACID CCNC.	0 1	0.04920	VCLUME OF METAL ICN	S 0L. =	2.00
BUFFER SALT CONC.	ء م	•C4558	CONC. OF METAL ICN	scl. =	0.10261
ATTO CF THE VKCH TO VE			CONC. EXCESS ACID I	N METAL =	0.0
FINAL SCLUTION VOLUMS	n	100.00			
STRAIGHT LINE ECLATICN-Y	γ= 0	1.3CF355-03+(-0.9(C660E-C4)*S3	RT(X)	

A CALC ERROR PH K4 USED K4 USED K4 THEO VOL KNC C.253 -C.01 3.4557 0.305546-03 0.305586-03 7.2511 C.342 CC.017 3.4597 0.305546-03 0.305586-03 7.2511 C.3419 0.112 3.4597 0.305546-03 0.305586-03 7.2511 C.4419 0.112 3.4544 0.305566-03 0.305566-03 7.2210 C.4506 -C.017 3.4467 0.304476-03 0.304566-03 7.210 C.4505 -0.008 3.4417 0.3044666-03 0.3044676-03 7.210 C.4505 -0.008 3.4417 0.3034666-03 0.304566-03 7.210 C.757 -1.57 3.44405 0.3034766-03 0.304566-03 7.114 C.757 -1.411 3.44405 0.30334666-03 0.301466-03 7.114 C.757 -1.411 3.4405 0.3014666-03 7.114 7.114 C.757 -1.411 0.3037666-03 0.3014666-03 7.114 C.757 1.4405 0.30126666 0.3014666-03 7.114 <th></th> <th></th> <th>K(I) K(I)/K</th> <th></th> <th>K(I)</th> <th>(1) Vn SIS</th> <th>TA(I)</th> <th>ופסטניינו וופסטניינו</th> <th></th>			K(I) K(I)/K		K(I)	(1) Vn SIS	TA(I)	ופסטניינו וופסטניינו	
A CALC ERROR PH K4 USED K4 USED X4 THEO VOL KNC C.253 -C.01 3.4557 0.305546-03 0.305506-03 7.251 C.3419 C.17 3.4597 0.305546-03 0.305506-03 7.251 C.3419 C.117 3.4597 0.305546-03 0.305506-03 7.251 C.4819 C.117 3.4597 0.305546-03 0.305566-03 7.251 C.4606 C.017 3.4467 0.304476-03 0.304566-03 7.210 C.4606 C.017 3.4467 0.304476-03 0.304566-03 7.210 C.4606 C.017 3.4467 0.303466-03 0.3034666-03 7.210 C.4606 C.006 3.4417 C.3033466-03 0.3034666-03 7.169 C.767 -1.111 3.44407 0.3034666-03 0.3014666-03 7.169 C.767 -1.111 3.44407 0.30126660 7.169 7.169 C.757 -1.111 3.44407 0.30126660 7.169 7.169 C.757 1.111 3.44407 0.30126660 7.169	0.407	0.298855-03	0.29815E-03	3.4651	1.19	2.229	• 243	~	126625-01 1
A CALC ERROR PH K4 USED K4 THEO VOL KNC C.2553 -C.01 3.4957 0.305666-03 0.305685-03 7.251 C.3419 C.17 3.4957 0.305546-03 0.305586-03 7.251 C.4819 C.117 3.4957 0.305546-03 0.305586-03 7.251 C.4819 C.117 3.4460 0.305546-03 0.305586-03 7.251 C.4606 -C.017 3.4460 0.304676-03 0.304566-03 7.210 C.4500 -C.017 3.4460 0.304476-03 0.304566-03 7.210 C.4606 -C.017 3.4460 0.3044666-03 0.304566-03 7.210 C.4606 -C.017 3.44417 0.3034666-03 0.3034566-03 7.210 C.4606 -C.066 3.44417 0.3034666-03 0.3034666-03 7.216 C.767 -11.11 3.44405 0.3037666-03 0.3034666-03 7.164 C.767 -11.11 3.44405 0.3032666-03 0.3010467-03 7.164 C.767 -11.11 3.44705 0.30126666-03 0.301	6.535	0.29941E-03	0.29853E-03	3.4661	I.40	1.199	.215	-	117305-C1 1
A CALC ERROR PH K4 USED K4 THED VDL KNC C.253 -C.01 3.5472 0.3058665-03 0.3055865-03 7.271 C.253 -C.01 3.4557 0.3058665-03 0.3055865-03 7.271 C.417 3.4557 0.3058665-03 0.3055865-03 7.271 C.417 3.4557 0.3054665-03 0.3055065-03 7.247 C.4550 C.17 3.45646 0.3044765-03 0.3054675-03 7.210 C.4550 C.17 3.45646 0.30346565-03 0.3045665-03 7.210 C.4550 C.17 3.4417 C.30374656-03 0.3045665-03 7.210 C.4551 0.008 3.4417 C.30374655-03 0.3045665-03 7.210 C.455 0.008 3.44405 0.3037655-03 0.3014067-03 7.114 C.757 11.11 3.44405 0.3027655-03 7.3169 7.3169 C.757 11.11 3.44405 0.3027655-03 7.3166 7.3050 C.8291 1.270 1.111 3.44405 0.	6.605	0.300085-03	0.29853E-03	3.4628	1.74	1.166	.1 86	٦	108015-01
h CALC ERROR PH K4 USED K4 THEO VOL KNC C.253 -C.01 3.5472 0.3058465-03 0.3055465-03 7.271 C.253 -C.01 3.4557 0.3058465-03 0.3055865-03 7.271 C.419 C.117 3.45957 0.3058465-03 0.3055865-03 7.247 C.419 C.117 3.45957 0.3044765-03 0.3055065-03 7.247 C.4550 C.117 3.45465 0.3044765-03 0.304576703 7.210 C.4550 C.117 3.44405 0.303446503 0.303466703 7.210 C.4551 -1.11 3.44405 0.3034765-03 0.3035255-03 7.116 C.757 -1.577 3.44405 0.3037655-03 0.3016467-03 7.116 C.750 -1.11 3.44405 0.3027665-03 0.3035255-03 7.166 C.750 -1.11 3.44405 0.3027665-03 0.30350765-03 7.059 C.750 1.266 0.3027666-03 0.3016465-03 7.056 7.056 C.751 1.4405	6.674	0.30024E-03	0.299335-03	3.460C	1.29	1.131	,14ć		98943F-C2 1.
A CALC ERROR PH K4 USED K4 T+E0 VDL KNC C.253 -C.01 3.5472 0.305846-03 0.305586-03 7.271 C.342 -C.01 3.4557 0.305846-03 0.305586-03 7.271 C.342 -C.01 3.4557 0.305846-03 0.305586-03 7.271 C.419 0.112 3.45697 0.305846-03 0.305586-03 7.247 C.419 0.112 3.4567 0.304686-03 0.304676-03 7.210 C.6605 -0.06 3.4417 0.3034766-03 0.3034566-03 7.210 C.6551 0.0.08 3.44417 0.3034766-03 0.3034566-03 7.169 C.6504 -0.008 3.44417 0.3034766-03 0.3035526-03 7.169 C.757 -1.11 3.44405 0.3035766-03 0.3035666-03 7.164 C.757 -1.11 3.44705 0.3035766-03 0.3035666-03 7.164 C.8291 1.226 3.44705 0.	6.742	0-30043E-03	0.295755-03	3.4570	06-0	1.093	103		85931£-C2 1.
A CALC ERROR PH K4 USED K4 T+E0 VDL KNC C 253 -C 01 3.5472 0.30584E-03 0.30584E-03 7.251 C 3457 0.30584E-03 0.305586-03 7.251 7.251 C 3457 0.30584E-03 0.305586-03 7.251 C 34560 0.30584E-03 0.305586-03 7.251 C 344690 0.30468E-03 0.30457E-03 7.250 C 550 C<17	6 . 309	0-300506-03	0.30019E-03	3.4540	0.38	1.051	055		B10197-C2 1.(
h CALC ERROR PH K4 USED K4 THEO VOL VOL KNC C.253 -C.01 3.5472 0.3058665-03 0.3053865-03 7.271 C.342 -C.01 3.4557 0.3055665-03 0.305506-03 7.271 C.417 3.4457 0.3055465-03 0.305506-03 7.271 7.247 C.417 3.44590 C.3044866-03 0.305506-03 7.2203 7.2210 C.4550 C.117 3.44467 0.303746703 0.304566-03 7.210 C.4550 C.117 3.44467 0.3034066-03 0.304566-03 7.210 C.4550 C.117 3.44467 0.3037666-03 0.304566-03 7.210 C.4551 1.11 3.44467 0.3037666-03 0.304566-03 7.164 C.767 -1.111 3.4405 0.30237666-03 0.3010466-03 7.114 C.750 -1.111 3.4405 0.3023766-03 0.3010466-03 7.114 C.777 -1.417 0	c.8/5	0.301305-03	C.30066E-03	3.4500	C.75	1.034	11		7.20365-C2 1.C
h CALC ERROR PH K4 USED K4 THEO VOL VOL KNC C.253 -C.01 3.5472 0.30586600 0.30554603 7.271 C.342 -C.01 3.4557 0.30586600 0.30550603 7.261 C.419 C.17 3.4557 0.30586603 0.30550603 7.261 C.417 3.45546 C.30488603 0.30550603 7.261 7.261 C.4550 C.17 3.45646 0.30447603 0.30456603 7.210 C.4550 C.17 3.44660 0.30447603 0.30456603 7.210 C.4550 C.17 3.44417 C.303746603 0.30456603 7.210 C.4551 0.008 3.44417 C.303746603 0.30456603 7.210 C.4553 0.008 3.44405 0.303766603 0.301046703 7.116 C.757 11.11 3.4405 0.3023766603 0.303406603 7.156 C.757 11.40 3.44205 0.302376	6-938	0.30125E-03	0.301135-03	3.447C	0.12	(,552	เมา เมา	°.	£3339E-C2 0.6
h CALC ERROR PH K4 USED K4 THEO VOL KNC C.253 -C.01 3.5472 0.30584603 0.30558603 0.3055003 7.271 C.342 -C.01 3.5472 0.30584603 0.305506-033 7.271 C.419 0.17 3.4597 0.30584603 0.305506-033 7.247 C.419 0.17 3.4597 0.30584603 0.305506-033 7.247 0.488 0.12 3.45697 0.30547603 0.305506-033 7.247 0.488 0.12 3.45697 0.3044776-03 0.3045676-033 7.210 0.488 0.12 3.44405 0.3034766-03 0.304566-033 7.210 0.4605 0.3034766-03 0.3034666-03 0.301467-033 7.1169 0.701 3.4405 0.3033776-03 0.3014067-033 7.1141 0.7507 11.11 3.4405 0.302266-033 0.3014067-033 7.1141 0.7501 1.226 3.42350 0.3025606-033	1.000	0.303075-03	0.30166E-03	3.4420	1.40	C.891	50	5°0	54475 C2 C.S
h CALC ERROR PH K4 USED K4 THEO VOL KNC C.253 -C.01 3.5472 0.305846-03 0.305506-03 7.271 C.253 -C.01 3.5472 0.305846-03 0.305506-03 7.271 C.342 -C.01 3.4557 0.305846-03 0.305506-03 7.271 C.342 -C.01 3.4557 0.305846-03 0.305506-03 7.247 C.419 0.12 3.4567 0.304486-03 0.305186-03 7.247 0.488 0.12 3.4460 0.304476-03 0.304476-03 7.210 C.550 C.17 3.44417 0.3034766-03 0.304366-03 7.210 C.6605 -0.008 3.4417 0.3034766-03 0.3035526-03 7.169 C.6551 0.157 3.44407 0.3037466-03 0.301466-03 7.164 C.707 -1.57 3.4400 0.303766-03 0.301406-03 7.114	7.059	0.30360E-03	0.30220F-03	3564.6	1.26	C.824	ŝ	С. в С.	460052-02 C.R3
A CALC ERROR PH K4 USED K4 THEO VOL KNC C.253 -C.01 3.5472 0.3056667-03 0.3055937-03 7.271 C.3419 C.17 3.4597 0.3055467-03 0.305506-03 7.261 C.419 C.17 3.4597 0.3054667-03 0.305506-03 7.247 C.419 C.17 3.4596 0.3044886-03 0.305506-03 7.247 C.417 3.4569 0.3044776-03 0.30450676-03 7.230 7.230 C.4550 C.17 3.4460 0.3044776-03 0.3044575-03 7.210 C.4550 C.06 3.03476703 0.304556-03 7.210 7.210 C.4553 0.008 3.44417 C.3033746703 0.3035556-03 7.169 C.4553 -1.57 3.44455 0.30337776-03 0.3010467-03 7.164	7.114	0.30140E-03	0.30276E-03	3.4400	-1.11	C.750		C • 7	379905-02 0.74
h CALC ERROR PH K4 USED K4 T+E0 VDL KNC C.253 -C.01 3.5472 C.30566E-03 0.305985-03 7.271 C.342 -C.01 3.4457 O.30584E-03 0.30550E-03 7.261 C.342 -C.01 3.4457 O.30584E-03 0.30550E-03 7.261 O.419 C.17 3.4454 O.30488E-03 0.30556E-03 7.247 O.488 O.12 3.4466 O.30468E-03 0.3054667-03 7.210 C.550 C.17 3.4466 O.3034656-03 0.304566-03 7.210 C.655 -0.06 3.4417 C.3037465-03 0.3035656-03 7.169 C.658 0.08 3.4352 0.3035256-03 7.166	7.141	0.30104E-03	0.303072-03	3.4405	-1.57	C.707	20	0.6	339735-C2 0.69
h CALC ERROR PH K4 USED K4 THEO VOL KNC C.253 -C.01 3.5472 0.30566E-03 0.305936-03 7.271 C.253 -C.01 3.4957 0.30566E-03 0.30550E-03 7.261 C.342 -C.01 3.4957 0.305468E-03 0.30550E-03 7.261 C.419 C.117 3.44544 0.304488E-03 0.30550E-03 7.247 0.488 C.117 3.4466 0.304478E-03 0.304567E-03 7.210 C.550 C.17 3.4466 0.3034478E-03 0.304567E-03 7.210 C.6605 -C.006 3.4417 C.3037465E-03 0.303656-03 7.189	7.166	0.303525-03	C.30340E-03	3.4352	0.08	C.658	α	3.65	257567-022 0.65
h CALC ERROR PH K4 USED K4 THEO VOL KNC C.253 -C.01 3.5472 0.30566EE-03 0.305583E-D3 7.271 C.253 -C.01 3.5472 0.30556EE-03 0.305581E-D3 7.271 C.342 -C.07 3.4557 0.30534E-03 0.30520E-03 7.261 C.419 C.17 3.4554 0.30448E-03 0.305518E-03 7.247 0.488 0.12 3.4554 0.30447E-03 0.304516F-03 7.240 0.488 0.12 3.4466C 0.30447E-03 0.304516F-03 7.220 C.550 C.17 3.4466C 0.304456F-03 0.304366F-03 7.210	7.189	0.30365E~03	C.30374E-03	3.4417	-0.06	C.606	÷	0.60	253P73-C2 0.60
h CALC ERROR PH K4 USED K4 THEO VOL KNC C.253 -C.01 3.5472 0.305846E-03 0.305836-03 7.271 C.253 -C.01 3.5472 0.305846E-03 0.30550E-03 7.271 C.342 -C.07 3.4557 0.305346E-03 0.30550E-03 7.247 C.419 0.17 3.4556 0.304486E-03 0.305518E-03 7.247 0.468 0.12 3.45544 0.304476=03 0.305467E-03 7.247	7.210	0.304366-03	0.304056~03	3.446C	C.17	C.550		0.55	22027F-C2 0.55
N CALC ERROR PH K4 USED K4 T+E0 VDL KNC C.253 -C.01 3.5472 0.3056665-03 0.305835-03 7.271 C.342 -C.07 3.4457 0.305345-03 0.3058035-03 7.261 C.3419 C.17 3.4690 0.3064865-03 0.3051865-03 7.247	7.230	0.304675-03	0.30447E-03	3.4544	0.12	0.488	æ	0.45	1328CF-C2 0.4E
N CALC ERROR PH K4 USED K4 T+E0 VDL KNC C.253 -C.01 3.5472 0.30566EC-03 0.30583E-03 7.271 C.342 -C.07 3.4557 0.30534E-03 0.30520E-03 7.261	7.247	0.30518E-03	C.30488E~03	3.4690	C.17	C.419	0	C • 4 2	146135-C2 C+42
N CALC ERROR PH KA USED KA THEU VOL KNC C.253 -C.01 3.5472 0.30566E-03 0.30583E-03 7.271	7.261	0.30520E-03	0.30534E-03	3.4957	-C.07	C.342		0.34	110552-C2 3.34
N CALC ERROR PH KA USED KA THEU VOL KNC	7.271	0.305835-03	0.30566E-03	3.5472	10-2-	C.253	00	0.25:	755145-03 0-251
	VDL KNC	KA THEO	K4 USED	На	€RROR	A CALC		4 X II 7	NICN CON N ZXE

JUTANIMLI, STAIDA DA

THE NUMPER OF ITERATIONS = 4 SMIN = 0.8262E 30

8°765 ********

2.61799 1.67525

0.4149ë 03 0.4734ë 02

0.900F 00 C.257E 03

2.61795 4.29325

0.41455 09 0.15645 05

- 2

186

.

.

STABILITY CONSTANT OF ZNZ-OHMIRA RUN B JANUARY 14 1972

BRIG ACID CONCENTRATION	=	0.09849	ICNIC	STRE	NGTH OF	SOLUTION	=	0.1000
ORIG EASE CONCENTRATION	=	0.04982	POTAS	SIUM N	NITRATE	CONC.	=	1.2901
BUFFER ACID CONC.	Ξ	0.04867	VCLUM:	5 DF M	METAL I	CN SCL.	=	2.00
EUFFER SALT CONC.	=	3.04582	CONC.	05 1	METAL I	EN SOL.	=	0.05839
RATIO OF THE VKCH TO VE.	=	1.00000	CONC.	EXCE	SS ACID	IN METAL	=	0.0
FINAL SOLUTION VOLUME	=	100.00						
STRAIGHT LINE EQUATION-Y	=	0.308350-03+(-0.9	906603-	-04)*9	SQ	RT(X)		

(1)	VB	ONICN C	CN N	×₽ N	CALC	EUROR	РН	KA USE	D KA	THEO	VOL KNO3
1	3.000	0.156145	-C2 C.	CP7 (0.26	3.6226	0.304778	-03 0.30	4855-03	7.192
2	4.000	0.202862	-C2 C.	L 11 C	1112	-0.93	3.5952	0.30427E	-03 0.30	13965-03	7.161
3	5.000	0.243651	-C2 C.	137 (0.137	ວ.20	3.5768	0.303838	-03 0.30	13898-03	7.131
4	7.000	0.33960#	-02 0.	188 0	194	2.31	3.5542	0.303075	-03 0.30)381E-03	7.070
5	9.000	0.386018	-02 0.1	208 0	N.208	0.02	3.5480	0.302725	-03 0.30	2728-03	7.039
6	5.000	0.43243	-CZ C.	227 0	.231	-1.86	3.5432	0.302398	-03 0.30	180E-03	7.008
7	10.000	C.477C1F	-02 0.	255 (.253	0.87	3.5378	0.302098	E-03 0.30	12365-03	£.977
8	12.000	C.55520:	-62 Cal	294 (,297	-C.89	3.5320	0.301516	-03 0.30	1238-03	£.914
9	14.000	0.661615	-02 0.1	333 0	,340	-2.02	3.5280	0.300968	-03 0.30	10365-03	6.850
10	20.000	0.93566.	-02 0.4	462 0	3458	2.90	3.5200	0.29958E	-03 0.29	15842-03	6.657
11	22.000	C.10300F	-01 0.4	189 C	,496	-1.34	3.5197	0.29915	-03 0.29	8779-03	6.591
12	24.300	0.11204#	-01 0.4	537 0	.531	1.18	3.5180	0.29875	-03 0.29	908E-03	6.525
13	26.000	0.121357	-61 0.9	570 0	,565	3.87	3.5176	0.29836	-03 0.29	8602-03	6.458
14	28.000	C.130627	-01 0.0	505 0	, 599	1.13	3.5172	0.297998	-03 0.29	8296-03	6.390
15	30.000	0.139935	-01 0.0	539 0	.631	1.29	3.5170	0.297636	-03 0.29	7575-03	£.322
16	32.000	0.14928.	-C1 C.:	57C C	, 662	1.26	3,5170	0.297275	-03 0.29	7605-03	6.254
17	35.000	0.163274	-C1 C.	113 0	.706	1.75	3.5170	0.296778	-03 0.29	721E-03	6.151
18	37.000	0.172798	-01 0.1	741 0	.735	0.89	3.5175	C.296438	-03 0.29	6653-03	6.C81
19	40.000	C.19673~	-ci c.	7 92 (.775	2.17	3.5175	0.295968	-03 0.29	648E-03	5.977
	(I) 8E1	[4(I) L	I)AT:A DS) SIGN	' A (I)	к(І)	LEG	, к(I) к	([]/K(]+1)		
	1 0.56	E3F 02	1.75531	C.340	e 00	C.56⊂3€	C2 1.	75531	2.582		
	2 0.12	558 04	3.09861	C.755	E 02	C.2204E	C2 1.	34329 **	******		
	THE NUMES	R OF ITER	ATIONS =	4		SMIN = 0.	3C49E-C1				

NO POINTS FLEMINATED

STABILITY CONSTANT OF CO2-DHMIPA RUN 3 &PRIL 30 1972

FINAL SOLUTION VELUME = STRAIGHT LINE COUNTION-Y=	RATIO CONTE VELH TO VE =	BUFFER SALT CONC. =	BUFFER ACID CCNC. =	CRIG BASE CONCENTRATION =	DRIG ACID CONCENTRATION =
100.00 0.3C735	1.0000	0.04981	0.05060	0.04981	0.10041
-03+0-0.906€05-04) \$\$0 RT	CENC. EXCESS ACID IN	CENC. DF METAL ICN S	VOLUME OF METAL ICA S	POTASSIUM NITRATE CON	ICNIC STRENGTH OF SOL
(X)	METAL =	0r. =		•	UTICN =
	0.0	J.05579	2.00	1.2901	0.1000

	₽487 **	• 7 • 7	•61843 •44620	C2 . 1	0.4154 5 0.2754d	-427E-01	1843 0 1463 0	1.6	547 02 608 04	0.41 0.11	21
	X(I+l)	×(I)/	9 K(I)	5	×(1)	51024(1)	27/(2)	רכי פ	ŦΔ(])	BE	(1)
400.0	0-294835-03	4461-03	0.2	3-5033	1.57	3.362	C.876	+71 ⁻ -C1	3.234	C. 000	52 5
		99621-03	0.2	3.5032	- 2 • 2 9	0.730	C.728	10-153	C-1=7	0.00c	21 4
		36726-03	C.2	3.5035	-1.43	0.657	0.647	-55°-C1	0.164	5.000	30
	0.29/425-03	37585-03	0.2	3.5038	-0.67	13.577	C.573	135-01	0.141	C.000	19 3
6.367	0-29798-03	97946-03	0.2	3.5040	0.13	0.543	0.544	.742-01	C.131	000 A	19 2
t •43t	0-298466-03	9832E-33	C • 2 0	3.5045	0.5e	0.509	0.512	42 C1	C • 1 2 2	6.000	17 2
6.503	0-26666-03	98715-03	0.20	3.5052	1.13	0.474	0.479	11:-01	0.113	4.000	16 2
6.569	0-295372-03	9911c-03	0.20	3.5064	1.04	(),439	0.443	ヨファーご 1	0.103	0000-2	5
6.634	0.239756-03	99538-03	0.2	3.5080	č.87	0.401	3.405	435-02	0.946	C.000	14 2
0.0YY	C-30038E-03	99675-03	0.2	3.5038	1.50	0.364	C.37C	17002	C • P 5 3	2000-8	13 1
6.164	0.300616-03	00442-03	C • 30	3.5128	0.64	0,326	F25•0	13:-02	C.7:2	6.000	12 1
6.828	6.301212-03	0032-03	0.30	3.5163	1. 38	0,287	i.29]	: - C ?	0.640	4.000	11
268.9	0-301631-03	01462-03	0.30	3.5214	1.67	0,248	C•25-)	.c3C5	0.577	2.000	б 1
6. ubo	0.302156-03	50-35020	C.30	3.5285	C.47	0.209	C.210	5 0 - 493	C.435	C.00C	16
9.48.	0-302445-03)234E-03	0.30	3.5332	C.40	C . 1 80	C.19C	752-02	C.43c	000 · 5	я
610°J	0-302766-03)266E-03	0.30	3.5390	J. 39	0.169	0.169	572-02	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000.8	7
7.051	0-302876-03	3016-33	0.30	3.5466	-0.52	0.149	C.148	2302	0.347	7.000	ę
782.1	0-30326-03	EC-23EE(0.30	3.5561	-0-43	621.0	0.125	20-1-22 0-2-1-22	0.301	6.000	U)
7-114	0.303712-03	0378F-03	0.3	3.5689	-0.24	C.103	C.10F	4402	0.254	5.000	4
1.140	0-304208-03	04225-03	0.30	3.5971	-0.07	0.083	0.058	531102	C.2C7	4.000	υ.
1.118	0.304760-03	04728-03	0.30	3.ć150	0.16	0.063	0.0ۻ	15=-C2	C.160	3.000	2
7.211	0.305316-03	05325-03	0.30	3.5637	-0.02	0.047	C.047	s1r-02	C.111	2.000	ч
VOL KNC3	KA THEO	A USED	2	PH	これないない	N CALC	∧ ∹×F	רטא אטר	AVIC	٧B	Ē

NO POINTS SLIMINATED

SMJN = 0.19699-02

£

XIV. APPENDIX F:

FORMATION CONSTANTS OF THE COPPER(II) α -HydroxyISOBUTYRATE

COMPLEXES

0.1000 1.8880 4.00 0.10150 0.0 IONIC STRENGTH JF SOLUTION = POIASSIUN NITRATE CONC. = POIASSIUN NITRATE CONC. = CULUM: OF HETAL ICN SOL. = CCNC. EY "HETAL ICN SOL. = CONC. EXCESS ACID IN METAL = CONC. OCTOPER 7 1972 FUN 1+2 STABILITY CONSTANT OF CU2-HIPA

CRIG ACID CENEENTPATIECh = 0.10746 IONIC STRENG CRIG EASE CENEENTRATIEN = 0.05457 POTASSIUM NI EUFER ACID CENE. = 0.05749 VOLUME OF NE EUFER SALT CENE. = 0.04977 CENE. EF NE RATIO DF THE VKCH TE VE = 1.00500 CENE. EF NE FANAL SELUTIEN VELUMF = 200.050 FINAL SELUTIEN VELUMF = 200.050 CENE. EXCESS STRAIGHT LINF FELMATIEN-YE 0.1556 2F-034(-0.26159E-63)*X

9.9 0.159395-03 9.991 86 0.15921E-03 0.159695-03 9.991 87 0.15911E-03 0.159662-03 9.991 87 0.15911E-03 0.159662-03 9.991 87 0.15911E-03 0.159662-03 9.991 88 0.15911E-03 0.159662-03 9.991 89 0.15911E-03 0.159662-03 9.971 80 0.15911E-03 0.15915E-03 9.971 81 0.15911E-03 0.15915E-03 9.971 81 0.15911E-03 0.15915E-03 9.871 81 0.15911E-03 0.15915E-03 9.871 82 0.15911E-03 0.15915E-03 9.871 83 0.15915E-03 0.15945E-03 9.871 84 0.15845E-03 0.15846E-03 9.641 84 0.15845E-03 0.15846E-03 9.954 84 0.15845E-03 0.15748E-03 9.641 84 0.15745E-03 0.15748E-03 9.641 84 0.15745E-03 0.15748E-03 9.641 84 0.15746	а. 3.62, РН 3.62, Р	м цисц ЕККОК РН 0.182 0.02 3.71 0.306 0.56 3.62 0.507 -0.11 3.52
<pre>/f5 0.1991[E-03 0.1590[E-03 9.903 778 0.1991[E-03 0.1580[E-03 9.907 881 0.1991[E-03 0.1580[E-03 9.817 9.817 9.817 0.1980[E-03 0.1580[E-03 9.817 9.817 9.817 0.1981[E-03 0.1581[E-03 9.817 9.9177 9.9177 9.9177 9.9177 9.9177 9.9177 9.9177 9.9177 9.9177 9.9177 9.9177 9.9177 9.9177 9.9177 9.91779 9.9177 9.9177 9.91779 9.91779 9.9</pre>	1 	0-502 -0.31 3.5 0-502 -0.31 3.5 0-591 -0.22 3.5
 5874 0.1569LE-03 0.15896E-03 9.877 5881 0.1587LE-03 0.15875E-03 9.847 5980 0.1587LE-03 0.15875E-03 9.847 5980 0.1587LE-03 0.15875E-03 9.871 5980 0.1587LE-03 0.15875E-03 9.774 5980 0.15872E-03 0.15847E-03 9.616 6100 0.15847E-03 0.15847E-03 9.617 6100 0.15847E-03 0.15847E-03 9.617 6100 0.15846E-03 0.15847E-03 9.617 6100 0.15846E-03 0.15847E-03 9.617 6100 0.15847E-03 0.15847E-03 9.617 6110 0.15805E-03 0.15747E-03 9.614 6111 0.15767E-03 0.15747E-03 9.411 6512 0.15767E-03 0.15747E-03 9.411 6512 0.15767E-03 0.15747E-03 9.411 6513 0.15747E-03 0.15747E-03 9.411 6514 0.15767E-03 0.15747E-03 9.411 6517 0.157767E-03 0.157776-03 9.277 6528 0.157776E-03 0.157776-03 9.277 6529 0.157776E-03 9.15776E-03 9.411 6521 0.157767E-03 0.1577776-03 9.277 6521 0.157767E-03 0.1578777-03 9.277 6521 0.157767E-03 0.1577776-03 9.277 6522 0.157767E-03 0.1577776-03 9.277 6523 0.1577776E-03 0.1577776-03 9.277 6524 0.157677-03 0.1577776-03 9.277 6527 0.157767E-03 0.157776E-03 9.277 6528 0.157767E-03 0.155697E-03 9.277 6559 0.157767E-03 0.155697E-03 9.277 6559 0.157767E-03 0.155697E-03 9.277 6559 0.155697E-03 0.155697E-03 9.277 6550 0.15569		C.6650 -0.10 3. 0.6649 0.28 3.
5881 0.156912-03 0.15647E-03 9.84.7 5578 0.158012-03 0.15945E-03 9.77.7 5980 0.15811E-03 0.15945E-03 9.77.7 5980 0.15801E-03 0.15945E-03 9.77.7 5102 0.15804E-03 0.15945E-03 9.77.7 6102 0.15804E-03 0.15817E-03 9.645 6102 0.15804E-03 0.15847E-03 9.645 6103 0.158042E-03 0.15847E-03 9.645 6204 0.158042E-03 0.15847E-03 9.645 6209 0.158142E-03 0.158442 9.615 6210 0.158142E-03 0.158442 9.615 6220 0.158142E-03 0.1578142E-03 9.613 6217 0.15779E-03 0.15779E-03 9.613 6217 0.15779E-03 0.157776E-03 9.614 6217 0.15779E-03 0.157776E-03 9.614 6217 0.15779E-03 0.157776E-03 9.246 6220 0.15779E-03 0.157776E-03 9.246 6217 0.1577779E-03 0.15777776-03		0.767 -0.61 3.
5578 0.15871E-03 0.15975E-03 9.777 5980 0.15871E-03 0.15975E-03 9.695 6400 0.15845E-03 0.55838E-03 9.695 6102 0.15845E-03 0.55835E-03 9.695 6102 0.15845E-03 0.55835E-03 9.695 6102 0.15845E-03 0.55835E-03 9.695 6204 0.158325E-03 0.515835E-03 9.695 6204 0.158325E-03 0.515835E-03 9.612 6205 0.158325E-03 0.158345E-03 9.612 6216 0.158362E-03 0.158345E-03 9.612 6217 0.158362E-03 0.158345E-03 9.612 6220 0.158362E-03 0.157345E-03 9.612 6217 0.157416-03 0.157775E-03 9.431 6414 0.157795E-03 0.157705E-03 9.431 6414 0.157795E-03 0.157766E-03 9.431 6442 0.157795E-03 0.157766E-03 9.431 6442 0.157795E-03 0.157766E-03 9.431 6442 0.157766E-03 0.155666	ก้ก้	0-814 0-72 3.
6035 0.158666-03 0.158476-03 0.158486-03 0.158486-03 0.158486-03 0.0157486-03 0.0156486-03 0.0156486-03 0.0156486-03 0.0157486-03		0.858 0.568 3. 0.858 0.56 3.
0.10 0.15845 0.015845 0.015845 0.15845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015845 0.015846 0.015846 0.015846 0.015845 0.015846 0.015846 0.015846 0.015745 0.015746 0.015746 0.015746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157746 0.0157466 0.0157746 0.0157746 0.0157746 0.0157466 0.0157466 0.0157746 0.0157466 0.0156466 0.0156466 0.0157746 0.0156466 0.0156466 0.0156466 0.01564766 0.015646	" ,	C+897 C+65 3.
 6450 64150 6415 6416 6417 6417 6418 6418 6418 6418 6418 6419 6417 6418 6418 6418 6419 6420 6420 6420 6430 6456 64566 64566 64566 64566 64	'n'n	
0.2009 0.15845E-03 0.158415E-03 9.612 0.2000 0.158414E-03 0.158415E-03 9.612 0.2000 0.158414E-03 0.158417E-03 9.524 0.2000 0.158414E-03 0.158417E-03 9.524 0.2000 0.158417E-03 9.524 9.524 0.2000 0.158417E-03 9.524 9.524 0.2000 0.157417E-03 9.524 9.413 0.2000 0.157471702-03 9.424 9.414 0.2000 0.15745E-03 0.15746E-03 9.419 0.2000 0.15745E-03 0.15766E-03 9.247 0.4412 0.15745E-03 0.157766E-03 9.247 0.4422 0.15745E-03 0.157786E-03 9.247 0.4422 0.15718E-03 0.156967E-03 9.246 0.4557 0.15718E-03 0.156967E-03 9.246 0.5581 0.15718E-03 0.156967E-03 9.246 0.5572 0.15718E-03 0.156967E-03 9.246 0.5572 0.15718E-03 0.156967E-03 9.246 0.55607E-03 0.156967E-03	mi	0.966 0.12 3.
 6250 0.158146-03 0.158176-03 9.550 6220 0.158035-03 0.158176-03 9.571 6342 0.157095-03 0.157706-03 9.471 6342 0.157795-03 0.157782-03 9.471 6414 0.157795-03 0.157782-03 9.471 6442 0.157795-03 0.157782-03 9.471 6442 0.157782-03 0.157782-03 9.411 6442 0.157782-03 0.157782-03 9.246 6557 0.157782-03 0.156982-03 9.246 6557 0.157782-03 0.156697-03 9.246 6640 0.156932-03 0.156697-03 9.246 6640 0.156932-03 0.156697-03 9.246 6640 0.156697-03 0.156697-03 9.247 6740 0.156697	n n	0.996 0.10 3.
<pre></pre>	ŝ	
<pre></pre>	n m	1.047 C.56 3
6378 0.15779E-03 0.15779E-03 9.441 6375 0.15767E-03 0.15768E-03 9.343 6442 0.15755E-03 0.15768E-03 9.343 6442 0.157767E-03 0.15778E-03 9.343 6442 0.15778E-03 0.15778E-03 9.343 642 0.15778E-03 0.15778E-03 9.343 6520 0.15778E-03 0.15778E-03 9.266 6521 0.15778E-03 9.266 9.266 6520 0.15778E-03 9.191 9.266 6521 0.15778E-03 0.15778E-03 9.266 6520 0.1578E-03 0.15788E-03 9.266 6520 0.15788E-03 0.15688E-03 9.027 6520 0.15688E-03 0.156686E-03 9.026 6600 0.15688E-03 0.156686E-03 9.045 6610 0.15688E-03 0.156686E-03 9.045 6640 0.156866E-03 0.156686E-03 9.045 6640 0.156866E-03 0.156686E-03 9.045 6640 0.156866E	m	1-071 -0.50 3
		1.051 C.07 3
0.15755F-03 0.15768F-03 9.333 0.447 0.157575F-03 0.15768F-03 9.247 0.527 0.15718E-03 0.15726F-03 9.247 0.557 0.15718E-03 0.15726F-03 9.191 0.557 0.15718E-03 0.15726F-03 9.191 0.557 0.15718E-03 0.15726F-03 9.191 0.557 0.15718E-03 0.15699E-03 9.191 0.557 0.15718E-03 0.15699E-03 9.191 0.5501 0.15699E-03 0.15699E-03 9.191 0.5506 0.15696F-03 0.15669F-03 9.191 0.5606 0.15696F-03 0.15669F-03 9.047 0.56966 0.15669F-03 0.15669F-03 9.047 0.56966 0.15669F-03 0.15669F-03 9.047 0.56966 0.156696F-03 0.15669F-03 8.741 0.56966 0.156646F-03 0.156646F-03 8.741 0.5759 0.156646F-03 0.155646F-03 8.741 0.156646F-03 0.155646F-03 0.155646F-03 8.741 0.156646F-03 0.155646F-03 0.155646F-03 8.741 0.156646F-03 0.155646F-03 0.155646F-03 8.741 0.156646F-03 0.155646F-03		
		1-127 0.72
2.4558 0.17718E-03 0.15686E-03 9.191 3.6557 0.15718E-03 0.15686E-03 9.191 3.6512 0.15718E-03 0.15686E-03 9.191 3.6610 0.15653E-03 0.15648E-03 9.093 3.6610 0.15657E-03 0.15648E-03 8.943 3.664C 0.15667E-03 0.15648E-03 8.943 3.664C 0.15668E-03 0.15648E-03 8.944 3.6683 0.15568E-03 0.155468E-03 8.741 1.056 K[1] K([1]/K([1]]) 3.61912 -55139 3.61912 -55139 3.61912 -55139 3.61912 -55139 3.61912 -55139 3.61912 -55139 3.61912 -55139 3.6117 -		I.159 -0.50
3.6557 0.15718E-03 0.15684E-03 9.191 3.6582 0.15697E-03 9.191 3.6582 0.15657E-03 9.15697E-03 9.042 3.6610 0.15657E-03 0.156468E-03 8.942 3.664C 0.15667E-03 0.156468E-03 8.942 3.666C 0.15667E-03 0.15668E-03 8.942 3.666C 0.155667E-03 0.15668E-03 8.942 3.657C 0.15567E-03 0.15668E-03 8.942 3.657C 0.155618E-03 0.155667E-03 8.942 3.657C 0.155618E-03 0.155667E-03 8.741 3.657C 0.155618E-03 0.155667E-03 8.741 3.657C 0.155618E-03 0.15567E-03 8.741 3.675C 0.155618E-03 0.15567E-03 8.741 3.6752 0.155618E-03 0.15567E-03 8.741 3.6752 0.155618E-03 0.15567E-03 8.741 3.6772 0.155618E-03 0.155675-03 8.741 3.6772 0.155618E-03 0.155675-03 8.741 3.6772 0.155618E-03 0.155675-03 8.741 3.6773 0.155618-03 0.155675-03 8.741 3.7775 0.157475 0.15676505 0.15567505 3.77750505 0.1575050505 0.15567505 0.1556750505 3.77750505 0.1575050505 0.15567505050505050505050505050505050505050		1.173 -C.93
<pre></pre>		1.172 -0.84
3.6610 0.15663E-03 0.15663E-03 9.023 3.6640 0.15664E-03 9.023 9.023 3.6640 0.15664E-03 9.023 9.023 3.6640 0.15664E-03 9.023 9.023 3.6640 0.15664E-03 9.023 9.023 3.6640 0.15664E-03 0.15664E-03 9.023 3.6650 0.15664E-03 0.15664E-03 8.944 3.6650 0.15664E-03 0.15664E-03 8.944 3.6650 0.156646E-03 0.15604E-03 8.741 3.6750 0.15618E-03 0.15604E-03 8.741 3.6770 0.15648E-03 0.15604E-03 8.741 3.6770 0.155648E-03 0.15604E-03 8.741 3.6770 0.155648E-03 0.15604E-03 8.741 3.6771 0.155648E-03 0.15604E-03 8.741 3.6772 0.155648E-03 0.15604E-03 8.741 3.6772 0.155648E-03 0.15604E-03 8.741 3.6772 0.155648E-03 0.15604E-03 8.741 3.6772 0.155648E-03 0.15604E-0		1.170 -0.18 1.196 -0.56
3.664(2 0.15681£-3) 0.1566772-03 9.007 3.666(2 0.156687E-03 8.994 3.666(2 0.156687E-03 0.156681E-03 8.944 3.666(2 0.156564E-03 0.156681E-03 8.944 3.677(2 0.1555182-03 0.155691E-03 8.744 3.677(2 0.155182-03 0.155691E-03 8.744 3.677(2 0.155681E-03 0.155691E-03 8.744 3.74912 - 10.55681E-03 0.155691E-03 8.584 3.74912 - 10.595 3.24912 - 10		1.196 -0.35
3.0660 0.15669F-03 0.15668F-03 8.994 3.0667 0.15666F-03 8.944 3.6697 0.15565F-03 0.15668F-03 8.944 3.6747 0.15565E-03 0.15605E-03 8.744 3.6758 0.15618E-03 0.15665E-03 8.744 3.6758 0.15618E-03 0.15565E-03 8.744 3.6777 0.15568E-03 0.15567E-03 8.744 3.6758 0.15568E-03 0.15567E-03 8.744 1.7978 0.15568E-03 0.15567E-03 8.744 0.15568E-03 0.15567E-03 8.744 0.15568E-03 0.155697E-03 8.744 0.15568E-03 0.155697E-03 8.744 0.15568E-03 0.155697E-03 8.744 0.15568E-03 0.155697E-03 8.744 0.15568E-03 0.155697E-03 8.744 0.15568E-03 0.155697E-03 8.744 0.15568E-03 0.15568E-03 8.744 0.1777777777777777777777777777777777777		1.207 -0.66
2.0000 0.11004F-03 0.15066E-03 8.943 3.66740 0.15656E-03 0.15636E-03 8.943 3.6740 0.15656E-03 0.15636E-03 8.747 3.6770 0.15618E-03 0.15636E-03 8.747 3.6777 0.15618E-03 0.15636E-03 8.747 3.6777 0.15606E-03 0.15639E-03 8.747 3.6777 0.15606E-03 0.15639E-03 8.747 1.05 K(I) K(I)/K(I+1) 1.05 K(I) K(I)/K(I+1) 0.3 2.91552 -5.139 0.3 2.91552 -5.139 0.2 ******* *******		1.216 -0.02
03 2.6147 0.15506E-03 0.15506E-03 8.841 3.6740 0.15618E-03 0.15506E-03 8.790 3.6750 0.15618E-03 0.15506E-03 8.790 3.6770 0.15618E-03 0.15506E-03 8.790 3.6770 0.15608E-03 0.155699E-03 8.781 3.6830 0.15568E-03 0.155699E-03 8.781 1.05 K(I) K(I)/K(I+1) LDG K(I) K(I)/K(I+1) LDG K(I) 2.91552 10.505 03 2.91552 10.505 03 2.91552 10.505 03 2.91552 5.5139 03 2.91552 5.5139		1.225 -C.58
3.6760 Q.156182-03 Q.15596E-03 0.797 3.6770 Q.156182-03 0.15596E-03 0.797 3.6777 Q.15506E-03 0.15627E-03 0.747 3.6777 Q.15506E-03 0.15569F-03 0.747 3.6830 Q.15568E-03 0.155697E-03 0.567 3.6830 Q.15568E-03 0.155697E-03 0.567 1.66 K(1) K(1/K(1+1) LOG K(1) K(1/K(1+1) LOG K(1) K(1/K(1+1) LOG X(1) K(1/K(1+1) CQ 2.91552 10.505 22 2.91552 10.505 23 2.91522 10.505 24 2.9152		1.240 -0.96
3.6758 0.15610E-03 0.15604E-03 8.790 3.6770 0.15604E-03 0.15627E-03 8.740 3.6870 0.15568E-03 0.15589E-03 8.741 LOG K(I) K(I/)K(I+1) 20 2.157588E-05 21 1.79812 10.505 22 1.79812 -5.139 22 ******* *******		1.246 -0.71
<pre>4.0/7C 0.15606E-03 0.15637E-03 8.74, 3.6830 0.15568E-03 0.15589E-03 8.58% LDG K(I) K(I/K(I+1) 13 2.81552 10.505 22 1.79812 -5.139 22 ******* ********</pre>		1.246 -C.46
LOG K(F) K(F)/K(F+1) 2 2.91552 10.505 2 1.79912 -5.139 2 *******	., .,	1.266 C.R0
3 2.99155 10.505 1.70912 -5.139 ******* ******	Ξ	GMA(1) K(1)
	3E 0	-50E 01 C.66C0E 0 -04F 03 0.62R2E 0 -48E 05 -0.1223E 0

.

NC PCINTS ELIMIANTEC

.

XV. ACKNOWLEDGMENTS

The author wishes to express his sincere gratitude to Professor Dr. J. E. Powell for his patience, assistance and encouragement throughout the author's graduate career.

Besides professor Dr. J. E. Powell, who in many ways made the author's graduate career an educational and rewarding experience, Harvey Burkholder, Don Johnson, Bill Carroll, Jim Miller and Medhinee Uthaichaya are also people who the author wants to express his deepest thanks for their help and advice.

Finally, a special word of thanks is due to the author's family, whose contribution of support and encouragement is so vast as to be difficult to acknowledge.